Kaggle案例——使用scikit-learn解决DigitRecognition问题

1、scikit-learn简介

scikit-learn是一个基于NumPy、SciPy、Matplotlib的开源机器学习工具包,采用Python语言编写,主要涵盖分类、

回归和聚类等算法,例如knn、SVM、逻辑回归、朴素贝叶斯、随机森林、k-means等等诸多算法,官网上代码和文档

都非常不错,对于机器学习开发者来说,是一个使用方便而强大的工具,节省不少开发时间。

scikit-learn官网指南:http://scikit-learn.org/stable/user_guide.html

上一篇文章《大数据竞赛平台—Kaggle入门》(回复本公众号“kaggle”可获取) 我分两部分内容介绍了Kaggle,在第二部分中,我记录了解决Kaggle上的竞赛项目DigitRecognition的整个过程,当时我是用自己写的kNN算法,尽管自己写歌kNN算法并不会花很多时间,但是当我们想尝试更多、更复杂的算法,如果每个算法都自己实现的话,会很浪费时间,这时候scikit-learn就发挥作用了,我们可以直接调用scikit-learn的算法包。当然,对于初学者来说,最好还是在理解了算法的基础上,来调用这些算法包,如果有时间,自己完整地实现一个算法相信会让你对算法掌握地更深入。

2、使用scikit-learn解决DigitRecognition

我发现自己很喜欢用DigitRecognition这个问题来练习分类算法,因为足够简单。如果你还不知道DigitRecognition问题是什么,请先简单了解一下(https://www.kaggle.com/c/digit-recognizer),在我上一篇文章《大数据竞赛平台—Kaggle入门》中也有描述。下面我使用scikit-learn中的算法包kNN(k近邻)、SVM(支持向量机)、NB(朴素贝叶斯)来解决这个问题,解决问题的关键步骤有两个:

1、处理数据。

2、调用算法。

(1)处理数据

这一部分与上一篇文章《大数据竞赛平台—Kaggle入门》 中第二部分的数据处理是一样的,本文不打算重复,下面只简单地罗列各个函数及其功能,在本文最后部分也有详细的代码。

def loadTrainData():
    #这个函数从train.csv文件中获取训练样本:trainData、trainLabel
def loadTestData():
    #这个函数从test.csv文件中获取测试样本:testData
def toInt(array):
def nomalizing(array):
    #这两个函数在loadTrainData()和loadTestData()中被调用
    #toInt()将字符串数组转化为整数,nomalizing()归一化整数
def loadTestResult():
    #这个函数加载测试样本的参考label,是为了后面的比较
def saveResult(result,csvName):
    #这个函数将result保存为csv文件,以csvName命名

“处理数据”部分,我们从train.csv、test.csv文件中获取了训练样本的feature、训练样本的label、测试样本的feature,在程序中我们用trainData、trainLabel、testData表示。

(2)调用scikit-learn中的算法

kNN算法

#调用scikit的knn算法包
from sklearn.neighbors import KNeighborsClassifier  
def knnClassify(trainData,trainLabel,testData): 
    knnClf=KNeighborsClassifier()#default:k = 5,defined by yourself:KNeighborsClassifier(n_neighbors=10)
    knnClf.fit(trainData,ravel(trainLabel))
    testLabel=knnClf.predict(testData)
    saveResult(testLabel,'sklearn_knn_Result.csv')
    return testLabel

kNN算法包可以自己设定参数k,默认k=5,上面的comments有说明。

更加详细的使用,推荐上官网查看:http://scikit-learn.org/stable/modules/neighbors.html

SVM算法

#调用scikit的SVM算法包
from sklearn import svm   
def svcClassify(trainData,trainLabel,testData): 
    svcClf=svm.SVC(C=5.0) #default:C=1.0,kernel = 'rbf'. you can try kernel:‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’, ‘precomputed’  
    svcClf.fit(trainData,ravel(trainLabel))
    testLabel=svcClf.predict(testData)
    saveResult(testLabel,'sklearn_SVC_C=5.0_Result.csv')
    return testLabel

SVC()的参数有很多,核函数默认为'rbf'(径向基函数),C默认为1.0

更加详细的使用,推荐上官网查看:http://scikit-learn.org/stable/modules/svm.html

朴素贝叶斯算法

#调用scikit的朴素贝叶斯算法包,GaussianNB和MultinomialNB
from sklearn.naive_bayes import GaussianNB      #nb for 高斯分布的数据
def GaussianNBClassify(trainData,trainLabel,testData): 
    nbClf=GaussianNB()          
    nbClf.fit(trainData,ravel(trainLabel))
    testLabel=nbClf.predict(testData)
    saveResult(testLabel,'sklearn_GaussianNB_Result.csv')
    return testLabel
    
from sklearn.naive_bayes import MultinomialNB   #nb for 多项式分布的数据    
def MultinomialNBClassify(trainData,trainLabel,testData): 
    nbClf=MultinomialNB(alpha=0.1)      #default alpha=1.0,Setting alpha = 1 is called Laplace smoothing, while alpha < 1 is called Lidstone smoothing.       
    nbClf.fit(trainData,ravel(trainLabel))
    testLabel=nbClf.predict(testData)
    saveResult(testLabel,'sklearn_MultinomialNB_alpha=0.1_Result.csv')
    return testLabel

上面我尝试了两种朴素贝叶斯算法:高斯分布的和多项式分布的。多项式分布的函数有参数alpha可以自设定。

更加详细的使用,推荐上官网查看:http://scikit-learn.org/stable/modules/naive_bayes.html

使用方法总结:

第一步:首先确定使用哪种分类器,这一步可以设置各种参数,比如:

svcClf=svm.SVC(C=5.0)

第二步:接这个分类器要使用哪些训练数据?调用fit方法,比如:

svcClf.fit(trainData,ravel(trainLabel))

fit(X,y)说明:

X: 对应trainData

array-like, shape = [n_samples, n_features],X是训练样本的特征向量集,n_samples行n_features列,即每个训练样本占一行,每个训练样本有多少特征就有多少列。

y: 对应trainLabel

array-like, shape = [n_samples],y必须是一个行向量,这也是上面为什么使用numpy.ravel()函数的原因。

第三步:使用分类器预测测试样本,比如:

 testLabel=svcClf.predict(testData)

调用predict方法。

第四步:保存结果,这一步是取决于我们解决问题的要求,因为本文以DigitRecognition为例,所以有:

saveResult(testLabel,'sklearn_SVC_C=5.0_Result.csv')

(3)make a submission

上面基本就是整个开发过程了,下面看一下各个算法的效果,在Kaggle上make a submission

knn算法的效果,准确率95.871%

朴素贝叶斯,alpha=1.0,准确率81.043%

SVM,linear核,准确率93.943%

3、工程文件

下载:回复本公众号“kaggle”可获取。

贴一下代码:

#!/usr/bin/python
# -*- coding: utf-8 -*-
"""
Created on Tue Dec 16 21:59:00 2014

@author: wepon

@blog:http://blog.csdn.net/u012162613
"""

from numpy import *
import csv

def toInt(array):
    array=mat(array)
    m,n=shape(array)
    newArray=zeros((m,n))
    for i in xrange(m):
        for j in xrange(n):
                newArray[i,j]=int(array[i,j])
    return newArray
    
def nomalizing(array):
    m,n=shape(array)
    for i in xrange(m):
        for j in xrange(n):
            if array[i,j]!=0:
                array[i,j]=1
    return array
    
def loadTrainData():
    l=[]
    with open('train.csv') as file:
         lines=csv.reader(file)
         for line in lines:
             l.append(line) #42001*785
    l.remove(l[0])
    l=array(l)
    label=l[:,0]
    data=l[:,1:]
    return nomalizing(toInt(data)),toInt(label)  #label 1*42000  data 42000*784
    #return trainData,trainLabel
    
def loadTestData():
    l=[]
    with open('test.csv') as file:
         lines=csv.reader(file)
         for line in lines:
             l.append(line)#28001*784
    l.remove(l[0])
    data=array(l)
    return nomalizing(toInt(data))  #  data 28000*784
    #return testData
    
def loadTestResult():
    l=[]
    with open('knn_benchmark.csv') as file:
         lines=csv.reader(file)
         for line in lines:
             l.append(line)#28001*2
    l.remove(l[0])
    label=array(l)
    return toInt(label[:,1])  #  label 28000*1
    
#result是结果列表 
#csvName是存放结果的csv文件名
def saveResult(result,csvName):
    with open(csvName,'wb') as myFile:    
        myWriter=csv.writer(myFile)
        for i in result:
            tmp=[]
            tmp.append(i)
            myWriter.writerow(tmp)
            
            
#调用scikit的knn算法包
from sklearn.neighbors import KNeighborsClassifier  
def knnClassify(trainData,trainLabel,testData): 
    knnClf=KNeighborsClassifier()#default:k = 5,defined by yourself:KNeighborsClassifier(n_neighbors=10)
    knnClf.fit(trainData,ravel(trainLabel))
    testLabel=knnClf.predict(testData)
    saveResult(testLabel,'sklearn_knn_Result.csv')
    return testLabel
    
#调用scikit的SVM算法包
from sklearn import svm   
def svcClassify(trainData,trainLabel,testData): 
    svcClf=svm.SVC(C=5.0) #default:C=1.0,kernel = 'rbf'. you can try kernel:‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’, ‘precomputed’  
    svcClf.fit(trainData,ravel(trainLabel))
    testLabel=svcClf.predict(testData)
    saveResult(testLabel,'sklearn_SVC_C=5.0_Result.csv')
    return testLabel
    
#调用scikit的朴素贝叶斯算法包,GaussianNB和MultinomialNB
from sklearn.naive_bayes import GaussianNB      #nb for 高斯分布的数据
def GaussianNBClassify(trainData,trainLabel,testData): 
    nbClf=GaussianNB()          
    nbClf.fit(trainData,ravel(trainLabel))
    testLabel=nbClf.predict(testData)
    saveResult(testLabel,'sklearn_GaussianNB_Result.csv')
    return testLabel
    
from sklearn.naive_bayes import MultinomialNB   #nb for 多项式分布的数据    
def MultinomialNBClassify(trainData,trainLabel,testData): 
    nbClf=MultinomialNB(alpha=0.1)      #default alpha=1.0,Setting alpha = 1 is called Laplace smoothing, while alpha < 1 is called Lidstone smoothing.       
    nbClf.fit(trainData,ravel(trainLabel))
    testLabel=nbClf.predict(testData)
    saveResult(testLabel,'sklearn_MultinomialNB_alpha=0.1_Result.csv')
    return testLabel


def digitRecognition():
    trainData,trainLabel=loadTrainData()
    testData=loadTestData()
    #使用不同算法
    result1=knnClassify(trainData,trainLabel,testData)
    result2=svcClassify(trainData,trainLabel,testData)
    result3=GaussianNBClassify(trainData,trainLabel,testData)
    result4=MultinomialNBClassify(trainData,trainLabel,testData)
    
    #将结果与跟给定的knn_benchmark对比,以result1为例
    resultGiven=loadTestResult()
    m,n=shape(testData)
    different=0      #result1中与benchmark不同的label个数,初始化为0
    for i in xrange(m):
        if result1[i]!=resultGiven[0,i]:
            different+=1
    print different

原文发布于微信公众号 - 大数据挖掘DT数据分析(datadw)

原文发表时间:2015-12-01

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏积累沉淀

数据挖掘算法之贝叶斯网络

贝叶斯网络 序 上上周末写完上篇朴素贝叶斯分类后,连着上了七天班,而且有四天都是晚上九点下班,一直没有多少时间学习贝叶斯网络,所以更新慢了点,利用清明节两天假期...

57310
来自专栏Pytorch实践

简单的搜索引擎搭建

1847
来自专栏达观数据

达观数据搜索引擎排序实践(下篇)

机器学习排序 机器学习排序(Machine Learning to rank, 简称MLR) 机器学习排序系统框架 机器学习排序系统一般分为离线学习系统和在线预...

41110
来自专栏AI研习社

你实践中学到的最重要的机器学习经验是什么?

在知乎看到「你实践中学到的最重要的机器学习经验是什么?」这个问题,相信经验对于许多刚准备入门机器学习的同学来说是必不可少的,因此AI研习社选取了3个精华回答给到...

2783
来自专栏华章科技

数据挖掘150道试题,测测你的专业能力过关吗

2.以下两种描述分别对应哪两种对分类算法的评价标准?(A) (a)警察抓小偷,描述警察抓的人中有多少个是小偷的标准。 (b)描述有多少比例的小偷给警察抓了的标准...

431
来自专栏深度学习计算机视觉

数据挖掘之数据预处理学习笔记数据预处理目的主要任务

数据预处理目的 保证数据的质量,包括确保数据的准确性、完整性和一致性 主要任务 数据清理 填写缺失的值、光滑噪声数据、识别或者删除离群的点,先解决这些脏数据,否...

2593
来自专栏人工智能头条

ACL 2017自然语言处理精选论文解读

871
来自专栏大数据挖掘DT机器学习

玩玩文本挖掘-wordcloud、主题模型与文本分类

本文主要介绍文本挖掘的常见方法,主要包括词频分析及wordcloud展现、主题模型、文本分类、分类评价等。分类主要包括无监督分类(系统聚类、KMeans...

3086
来自专栏数据科学与人工智能

【Python环境】python数据挖掘领域工具包

Python在科学计算领域,有两个重要的扩展模块:Numpy和Scipy。其中Numpy是一个用python实现的科学计算包。包括: 一个强大的N维数组对象Ar...

2777
来自专栏数据科学与人工智能

【Python环境】Python机器学习库

Python在科学计算领域,有两个重要的扩展模块:Numpy和Scipy。其中Numpy是一个用python实现的科学计算包。包括: 一个强大的N维数组对象Ar...

26410

扫码关注云+社区