前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >IBM 量子计算机内部结构图首度曝光,2018量子霸权战局预测

IBM 量子计算机内部结构图首度曝光,2018量子霸权战局预测

作者头像
新智元
发布2018-03-13 12:58:43
1.2K0
发布2018-03-13 12:58:43
举报
文章被收录于专栏:新智元新智元

本周,IBM50个量子比特原型机内部结构图曝光,全面展示了这台机器的构造和原理。IBM在“量子霸权”道路上雄心勃勃,但也面临着诸多问题。同时,来自谷歌、微软等大公司的竞争让2018年量子霸权争夺大戏异常精彩,值得期待!

2017年11月,IBM宣布成功构建并测量了具有类似性能指标的50个量子比特原型机。

50个量子比特被普遍认为可以进行普通超级计算机不能完成的任务,IBM此举也是在“量子霸权”(quantum supremacy)上具有里程碑意义的一步。

在本周在旧金山举行的IBM's inaugural Index 开发者大会上,该公司对外展示了50个量子比特原型机,更重要的是,原型机的内部结构图同时曝光。

不过,尽管IBM的50个量子比特原型机看上去非常先进,但量子计算仍处于初级阶段,包括IBM在内的公司都不太确定量子计算的下一步将走向何方。

与此同时,想要在量子计算这个蓬勃发展的领域取得“量子霸权”的不仅有IBM,还有谷歌(49个量子比特)、微软以及日本的数家企业与研究机构。

阿里云量子实验室首席科学家、之江实验室副主任施尧耘认为,2018年将上演量子计算年度大戏,几个大公司之间将出现量子霸权混战,未来量子计算面临着诸多变局。

VC、大公司、各国政府都在量子计算上玩添砖加瓦的施工比赛,让这个舞台看上去热闹非凡。

构造图曝光:IBM 50量子比特原型机大拆解

被曝光的IBM50量子比特原型机内部构造长这样。

利用量子处理需要保持绝对零度附近的恒定温度。这张细节的内部构造图详细解释了各个部件的特性,整台“冰箱”利用两种氦同位素的混合特性来创造这样的环境,由2000多台电脑制造而成。

量子位信号放大器(Qubit signal amplifier)

其中的一个放大器需要恒定在4开尔文

输入微波线路(input microwave lines)

每个容器都处于类似冰箱的环境中,从而保护量子位在发出信号的过程中控制热噪声以及读取信号。

超导同轴设备(superconducting coaxial lines)

为了尽量减少能量损失,在第一和第二连接轴之间插入信号同轴线,放大级由超导体制成。

量子放大器(quantum amplifiers)

磁屏遮罩内的量子放大器,放大处理读取信号,并将噪音最小化。

混合室(mixing chamber)

冰箱最底部的混合室提供了必要的冷却能力,使处理器和相关部件的温度降低到15mK,比外层空间更冷。

低温光电隔离器(cryogenic isolators)

低温隔离器可以使量子信号向前发送同时防止噪声影响其质量。

低温盾(Cryoperm shield)

量子处理器位于一个屏蔽层内,保护其免受电磁辐射的影响,控制信号质量。

高效与脆弱并存:量子计算机对温度、微波、光子等干扰高度敏感

量子计算机能够更有效地解决某些方程,如建模复杂分子。但这种高效率受到系统脆弱性的影响。

目前,量子比特的一致性时间在衰减前90微秒处达到顶点。也就是说,如果一个量子比特被指定为1,它只会在0.0009秒内保持1。 “之后,所有的努力就白费了,所以你需要有足够的时间真正地使用量子计算。”IBM Q战略副总裁Bob Sutor说,任何准备用量子计算的内容都必须在这段时间内完成。”

同时,量子计算机对来自温度、微波、光子,甚至是运行机器本身的电力的干扰也高度敏感。 Sutor说,由于热量存在,很多电子在四处移动,相互碰撞,这可能导致量子比特的退相干。这就是为什么这些机器必须冷却到接近绝对零度才能运行。

除了内部的温度,外部空间的温度也是需要保持在两到三度的绝对温度之间。Sutor说外层空间太热的话,就无法进行计算。现在,量子计算机平台的最低层存在于10毫开尔文的寒冷“冰箱”中,这是一个高于绝对零度的温度。Sutor说,未来几十年,我们可能还做不到能够在室温下运行的台式量子计算机。

不过令人惊讶的是,这些系统却相当节能。除了冷却运行系统所需的能量外(一个过程大约需要36个小时),IBM的量子原型机仅吸收10到15千瓦的功率,大致相当于10个标准微波炉。

IBM“量子霸权”局限:公众知识缺口、程序编写缺少、计算机拓展困难

现在IBM已经开发出了量子计算机系统,这只是第一步,下一个挑战是弄清楚如何处理它们。这正是该公司IBM Q系统聚焦的发展方向和未来目的。

IBM Q系统建立在IBM的Quantum Experience的技术之上,Quantum Experience允许任何人、企业、大学等编写和提交自己的量子应用程序或实验,以便在该公司可用的量子计算设备上运行,它本质上是用于量子计算的云服务。迄今为止,已有超过75000人使用该服务,运行了超过250万次的计算,并发表了超过24篇关于从量子相空间测量到同态加密的主题的研究论文。

为了增强由量子研究人员和应用开发人员组成的生态系统,IBM 还在今年年初推出了 QISKit (www.qiskit.org) 项目,这是一个开源软件开发人员套件,可在量子计算机的编程和运行中使用。

但是,尽管公众对这项技术的非常感兴趣,但IBM离“量子霸权”还很远。

在量子应用像经典计算机在20世纪70年代和80年代一样萌发之前,人们必须克服重大的知识缺口。 Sutor指出,关于量子计算将是什么以及什么是量子计算的算法,我们到现在还不确定,也不知道量子计算在其他些领域的适用程度如何。

Sutor很清楚编写程序的切入点是一个挑战。对于传统计算机来说,编程很简单,但量子计算机还没有这样的功能。

另外一个必须克服的挑战是如何扩展这些机器。正如Sutor指出的那样,向硅芯片添加量子比特是一项比较简单的任务,但是每增加一个元件,都会产生热量,同时也会增大让系统保持在其工作温度范围内所需的能量,前文说过,IBM的这台量子计算原型机必须冷却到接近绝对零度才能运行。

对此,Sutor的做法是推出量子版的摩尔定律,他认为这项技术的下一个重大进步是质量而非数量。 “有50个巨大的量子的机器比拥有2000个糟糕量子的机器强大得多。”他认为,量子计算研究应该关注于通过增加量子比特来提高系统的保真度。

2018年量子霸权格局:在“魔道大战”中进入两极世界时代

“量子霸权”这条路上,从来不缺少巨头的身影。

2017年4月,谷歌公布其实现“量子霸权”的路线图,声称将利用49量子比特的模拟系统攻克传统计算机无法解出的难题。

在谷歌的计划表中,他们计划于2017年底达成“量子霸权”,并在2016年年底展开了测试。这一测试的目标是证明,包含49个量子位的系统能解决超出任何传统计算机能力的问题。谷歌没有对最终结果置评,而结果是否成功也需要科学期刊的评审。

微软也是较早展开量子计算研究的公司,他们将研发重点放在了“有效操纵”上,但尚未产生可以工作的量子比特,有消息称微软将在近期公布最新突破。

英特尔实验室负责人迈克·梅伯里(Mike Mayberry)表示,在真正可行的技术出现之前,大型科技公司之间将会有一场“十年的竞赛”。他说,“我们现在还处于’玩具系统’时代”。

本月初,施尧耘曾在新智元发表文章,对2018年的量子计算格局进行预测,他认为,2018年的量子计算舞台将极其精彩,量子霸权硝烟战争已经打响,“魔道大战”即将上演。

施尧耘认为,量子计算将分为“超导戏班VS离子阱歌舞队”,并进入两极世界。顶端是量子算法的高级队:量子机器学习、优化算法和化学模拟;另一端是处理器只有四、五个比特的小型公司,但仍有可能成长为参天大树。

所以,2018年的量子计算值得期待。

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2018-02-24,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 新智元 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
容器服务
腾讯云容器服务(Tencent Kubernetes Engine, TKE)基于原生 kubernetes 提供以容器为核心的、高度可扩展的高性能容器管理服务,覆盖 Serverless、边缘计算、分布式云等多种业务部署场景,业内首创单个集群兼容多种计算节点的容器资源管理模式。同时产品作为云原生 Finops 领先布道者,主导开源项目Crane,全面助力客户实现资源优化、成本控制。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档