使用Python Pandas处理亿级数据

原文:http://www.justinablog.com/archives/1357?utm_source=tuicool&utm_medium=referral

在数据分析领域,最热门的莫过于Python和R语言,此前有一篇文章《别老扯什么Hadoop了,你的数据根本不够大》指出:只有在超过5TB数据量的规模下,Hadoop才是一个合理的技术选择。这次拿到近亿条日志数据,千万级数据已经是关系型数据库的查询分析瓶颈,之前使用过Hadoop对大量文本进行分类,这次决定采用Python来处理数据:

  • 硬件环境
    • CPU:3.5 GHz Intel Core i7
    • 内存:32 GB HDDR 3 1600 MHz
    • 硬盘:3 TB Fusion Drive
  • 数据分析工具
    • Python:2.7.6
    • Pandas:0.15.0
    • IPython notebook:2.0.0

源数据如下表所示:

Table

Size

Desc

ServiceLogs

98,706,832 rows x 14 columns

8.77 GB

交易日志数据,每个交易会话可以有多条交易

ServiceCodes

286 rows × 8 columns

20 KB

交易分类的字典表

数据读取

启动IPython notebook,加载pylab环境:

ipython notebook --pylab=inline

Pandas提供了IO工具可以将大文件分块读取,测试了一下性能,完整加载9800万条数据也只需要263秒左右,还是相当不错了。

import pandas as pd
reader = pd.read_csv('data/servicelogs', iterator=True)try:
    df = reader.get_chunk(100000000)except StopIteration:
    print "Iteration is stopped."

1百万条

1千万条

1亿条

ServiceLogs

1 s

17 s

263 s

使用不同分块大小来读取再调用 pandas.concat 连接DataFrame,chunkSize设置在1000万条左右速度优化比较明显。

loop = TruechunkSize = 100000chunks = []while loop:
    try:
        chunk = reader.get_chunk(chunkSize)
        chunks.append(chunk)
    except StopIteration:
        loop = False
        print "Iteration is stopped."df = pd.concat(chunks, ignore_index=True)

下面是统计数据,Read Time是数据读取时间,Total Time是读取和Pandas进行concat操作的时间,根据数据总量来看,对5~50个DataFrame对象进行合并,性能表现比较好。

Chunk Size

Read Time (s)

Total Time (s)

Performance

100,000

224.418173

261.358521

200,000

232.076794

256.674154

1,000,000

213.128481

234.934142

√ √

2,000,000

208.410618

230.006299

√ √ √

5,000,000

209.460829

230.939319

√ √ √

10,000,000

207.082081

228.135672

√ √ √ √

20,000,000

209.628596

230.775713

√ √ √

50,000,000

222.910643

242.405967

100,000,000

263.574246

263.574246

如果使用Spark提供的Python Shell,同样编写Pandas加载数据,时间会短25秒左右,看来Spark对Python的内存使用都有优化。

数据清洗

Pandas提供了 DataFrame.describe 方法查看数据摘要,包括数据查看(默认共输出首尾60行数据)和行列统计。由于源数据通常包含一些空值甚至空列,会影响数据分析的时间和效率,在预览了数据摘要后,需要对这些无效数据进行处理。

首先调用 DataFrame.isnull() 方法查看数据表中哪些为空值,与它相反的方法是 DataFrame.notnull() ,Pandas会将表中所有数据进行null计算,以True/False作为结果进行填充,如下图所示:

Pandas的非空计算速度很快,9800万数据也只需要28.7秒。得到初步信息之后,可以对表中空列进行移除操作。尝试了按列名依次计算获取非空列,和 DataFrame.dropna() 两种方式,时间分别为367.0秒和345.3秒,但检查时发现 dropna() 之后所有的行都没有了,查了Pandas手册,原来不加参数的情况下, dropna() 会移除所有包含空值的行。如果只想移除全部为空值的列,需要加上 axis 和 how 两个参数:

df.dropna(axis=1, how='all')

共移除了14列中的6列,时间也只消耗了85.9秒。

接下来是处理剩余行中的空值,经过测试,在 DataFrame.replace() 中使用空字符串,要比默认的空值NaN节省一些空间;但对整个CSV文件来说,空列只是多存了一个“,”,所以移除的9800万 x 6列也只省下了200M的空间。进一步的数据清洗还是在移除无用数据和合并上。

对数据列的丢弃,除无效值和需求规定之外,一些表自身的冗余列也需要在这个环节清理,比如说表中的流水号是某两个字段拼接、类型描述等,通过对这些数据的丢弃,新的数据文件大小为4.73GB,足足减少了4.04G!

数据处理

使用 DataFrame.dtypes 可以查看每列的数据类型,Pandas默认可以读出int和float64,其它的都处理为object,需要转换格式的一般为日期时间。DataFrame.astype() 方法可对整个DataFrame或某一列进行数据格式转换,支持Python和NumPy的数据类型。

df['Name'] = df['Name'].astype(np.datetime64)

对数据聚合,我测试了 DataFrame.groupby 和 DataFrame.pivot_table 以及 pandas.merge ,groupby 9800万行 x 3列的时间为99秒,连接表为26秒,生成透视表的速度更快,仅需5秒。

df.groupby(['NO','TIME','SVID']).count() # 分组fullData = pd.merge(df, trancodeData)[['NO','SVID','TIME','CLASS','TYPE']] # 连接actions = fullData.pivot_table('SVID', columns='TYPE', aggfunc='count') # 透视表

根据透视表生成的交易/查询比例饼图:

将日志时间加入透视表并输出每天的交易/查询比例图:

total_actions = fullData.pivot_table('SVID', index='TIME', columns='TYPE', aggfunc='count')total_actions.plot(subplots=False, figsize=(18,6), kind='area')

除此之外,Pandas提供的DataFrame查询统计功能速度表现也非常优秀,7秒以内就可以查询生成所有类型为交易的数据子表:

tranData = fullData[fullData['Type'] == 'Transaction']

该子表的大小为 [10250666 rows x 5 columns]。在此已经完成了数据处理的一些基本场景。实验结果足以说明,在非“>5TB”数据的情况下,Python的表现已经能让擅长使用统计分析语言的数据分析师游刃有余。

原文发布于微信公众号 - 大数据挖掘DT数据分析(datadw)

原文发表时间:2016-01-19

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏祝威廉

MLSQL拥抱BigDL,轻轻松松无编码玩深度学习

原谅我,前半句是真的,后半句是噱头,但是真的很简化了。 MLSQL已经有一个相对来比较完善的Python Runtime,细节可以参看这篇文章,所以玩深度学习是...

742
来自专栏芋道源码1024

Dubbo 源码解析 —— LoadBalance

前言 终于到了集群容错中的最后一个关键词,也就是 LoadBalance(负载均衡),负载均衡必然会涉及一些算法.但是也不用太担心,算法这个词虽然高大上,但是算...

3744
来自专栏数据科学与人工智能

【Python环境】使用Python Pandas处理亿级数据

在数据分析领域,最热门的莫过于Python和R语言,此前有一篇文章《别老扯什么Hadoop了,你的数据根本不够大》指出:只有在超过5TB数据量的规模下,Hado...

2745
来自专栏CDA数据分析师

入门必学!在Python中利用Pandas库处理大数据

在数据分析领域,最热门的莫过于Python和R语言,此前有一篇文章《别老扯什么Hadoop了,你的数据根本不够大》指出:只有在超过5TB数据量的规模下,Had...

1889
来自专栏IT派

使用 Pandas 处理亿级数据

在数据分析领域,最热门的莫过于Python和R语言,此前有一篇文章《别老扯什么Hadoop了,你的数据根本不够大》指出:只有在超过5TB数据量的规模下,Hado...

1034
来自专栏机器人网

工业控制PID系统的十五个基本概念

PID调节系统PID功能由PID调节器或DCS系统内部功能程序模块实现,了解与PID调节相关的一些基本概念,有助于PID入门新手快速熟悉调节器应用,在自动调节系...

2656
来自专栏生信技能树

第3篇:用MACS2软件call peaks

Peak calling即利用计算的方法找出ChIP-seq或ATAC-seq中reads富集的基因组区域。

1704
来自专栏AI研习社

聊天机器人还能这么玩!教你用 Tensorflow 搭建能理解语境的客服小二!

掌握对话沟通,语境为王。 我们将使用Tensorflow构建一个聊天机器人框架,向大家示范如何实现上下文的语境处理。 ? 有没有想过为什么大多数聊天机器人缺乏会...

4615
来自专栏AIUAI

GPU 显存 - Caffe 内存优化

3336
来自专栏云计算教程系列

如何在Ubuntu 14.04第2部分上查询Prometheus

Prometheus是一个开源监控系统和时间序列数据库。在如何在Ubuntu 14.04第1部分中查询Prometheus,我们设置了三个演示服务实例,向Pro...

490

扫码关注云+社区