确定权重方法之一:主成分分析

作者:数据小宇军

http://blog.sina.com.cn/s/blog_a032adb90101k47u.html

什么是权重呢?所谓权重,是指某指标在整体评价中的相对重要程度。权重越大则该指标的重要性越高,对整体的影响就越高。

权重要满足两个条件:每个指标的权重在0、1之间。所有指标的权重和为1。

权重的确定方法有很多,这里我们学习用主成分分析确定权重。

一、主成分基本思想:

图1 主成分基本思想的问与答

二、利用主成分确定权重

如何利用主成分分析法确定指标权重呢?现举例说明。

假设我们对反映某卖场表现的4项指标(实体店、信誉、企业形象、服务)进行消费者满意度调研。调研采取4级量表,分值越大,满意度越高。现回收有效问卷2000份,并用SPSS录入了问卷数据。部分数据见下图(详细数据见我的微盘,下载地址为http://vdisk.weibo.com/s/yR83T)。

图2 主成分确定权重示例数据(部分)

1、操作步骤:

Step1:选择菜单:分析——降维——因子分析

Step2:将4项评价指标选入到变量框中

Step3:设置选项,具体设置如下:

2、 输出结果分析

按照以上操作步骤,得到的主要输出结果为表1——表3,具体结果与分析如下:

表1 KMO 和 Bartlett 的检验

表1是对本例是否适合于主成分分析的检验。KMO的检验标准见图3。

图3 KMO检验标准

从图3可知,本例适合主成分分析的程度为‘一般’,基本可以用主成分分析求权重。

表2 解释的总方差

从表2可知,前2个主成分对应的特征根>1,提取前2个主成分的累计方差贡献率达到94.513% ,超过80%。因此前2个主成分基本可以反映全部指标的信息,可以代替原来的4个指标(实体店、信誉、企业形象、服务)。

表3 成份矩阵

从表3可知第一主成分与第二主成分对原来指标的载荷数。例如,第一主成分对实体店的载荷数为0.957。

3、确定权重

用主成分分析确定权重有:指标权重等于以主成分的方差贡献率为权重,对该指标在各主成分线性组合中的系数的加权平均的归一化

因此,要确定指标权重需要知道三点:

A 指标在各主成分线性组合中的系数

B 主成分的方差贡献率

C 指标权重的归一化

(1)指标在不同主成分线性组合中的系数

这个系数如何求呢?

用表3中的载荷数除以表2中第1列对应的特征根的开方。

例如,在第一主成分F1的线性组合中,实体店的系数=0.957/(2.775)1/2 ≈0.574。

按此方法,基于表2和表3的数据,在excel中可分别计算出各指标在两个主成分线性组合中的系数(见图4,其中SQRT表示开方)

图4 各指标在两个主成分线性组合中的系数

由此得到的两个主成分线性组合如下:

F1=0.574χ1-0.019χ2+0.574χ3+0.583χ4

F2=-0.048χ1+0.996χ2+0.010χ3+0.070χ4

(2)主成分的方差贡献率

表2中“初始特征值”的“方差%”表示各主成分方差贡献率,方差贡献率越大则该主成分的重要性越强。

因此,方差贡献率可以看成是不同主成分的权重。

由于原有指标基本可以用前两个主成分代替,因此,指标系数可以看成是以这两个主成分方差贡献率为权重,对指标在这两个主成分线性组合中的系数做加权平均。

说得有些晦涩,我们来举个例子。按上述思路,实体店χ1这个指标的系数为:

这样,我们可以用excel计算出所有指标的系数(见图5)

图5 所有指标在综合得分模型中的系数

由此得到综合得分模型为:

Y=0.409χ1+0.251χ2+0.424χ3+0.446χ4

(3)指标权重的归一化

由于所有指标的权重之和为1,因此指标权重需要在综合模型中指标系数的基础上归一化(见图6)

图6 指标权重的确定

图6显示了我们基于主成分分析,最终所得到的指标权重。

用主成分分析来确定权重,你学会了吗?

原文发布于微信公众号 - 大数据挖掘DT数据分析(datadw)

原文发表时间:2016-03-23

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏量化投资与机器学习

【Python机器学习】系列之从线性回归到逻辑回归篇(深度详细附源码)

第1章 机器学习基础 将机器学习定义成一种通过学习经验改善工作效果的程序研究与设计过程。其他章节都以这个定义为基础,后面每一章里介绍的机器学习模型都是按照这个...

34710
来自专栏真皮专栏

Random Forest

随机森林还是没有脱离聚合模型这块,之前学过两个aggregation model,bagging和decision tree,一个是边learning边unif...

672
来自专栏机器学习算法原理与实践

K近邻法(KNN)原理小结

    K近邻法(k-nearest neighbors,KNN)是一种很基本的机器学习方法了,在我们平常的生活中也会不自主的应用。比如,我们判断一个人的人品,...

785
来自专栏null的专栏

机器学习中的特征空间

声明:这篇博文主要是对参考文献中的那个PPT的学习之后记下的一些笔记,整理出来与大家一起分享,若笔记中有任何错误还请不吝指出,文中可能会使用到原作者的一些图,若...

3236
来自专栏专知

【干货】使用Pytorch实现卷积神经网络

3592
来自专栏大数据挖掘DT机器学习

判别模型、生成模型与朴素贝叶斯方法

1、判别模型与生成模型 回归模型其实是判别模型,也就是根据特征值来求结果的概率。形式化表示为 ? ,在参数 ? 确定的情况下,求解条件概率 ? 。通俗的解...

3296
来自专栏刘笑江的专栏

Deep Learning

1683
来自专栏磐创AI技术团队的专栏

使用Keras进行深度学习:(五)RNN和双向RNN讲解及实践

1473
来自专栏机器人网

图解机器学习(清晰的路线图)

每当提到机器学习,大家总是被其中的各种各样的算法和方法搞晕,觉得无从下手。确实,机器学习的各种套路确实不少,但是如果掌握了正确的路径和方法,其实还是有迹可循的,...

3849
来自专栏机器学习算法与Python学习

机器学习(12)之决策树总结与python实践(~附源码链接~)

关键字全网搜索最新排名 【机器学习算法】:排名第一 【机器学习】:排名第二 【Python】:排名第三 【算法】:排名第四 前言 在(机器学习(9)之ID3算法...

64311

扫描关注云+社区