截止到8月15日,《战狼Ⅱ》上映的第19天,票房已超45亿人民币。
真正成为唯一一部挺进世界影史票房前100名的亚洲电影。
抛开爆炸的票房不说,电影还激起了观众各种情绪,甚至有人放狠话说:敢喷《战狼Ⅱ》的,要么是智障,要么是公敌,就是这么简单粗暴。
尽管各路评论出街,媒体闹得沸沸扬扬,观众还是傻傻分不清楚哪边意见比较靠谱。
本文通过Python爬虫的方式获取数据,对豆瓣电影评论进行分析,制作了豆瓣影评的云图。
现在,让我们来看看,《战狼Ⅱ》评论里到底藏着哪些有趣的潜台词。
对于数据的获取,本文采用的是Python爬虫的方式获取的数据。用到的主要是requests包与正则包re。该程序并未对验证码进行处理。
之前也爬取过豆瓣的网页,当时由于爬取的内容少,所以并没有遇到验证码的事情。在写本文爬虫的时候,原以为也不会有验证码,但是当爬取到大概15000个评论的时候跳出来验证码。然后我就想不就是十二万吗?最多我也就是输入大概十几次验证码,所以就没有处理验证码的事情。
但是接下来的事情就有点坑到我了。爬取15000左右评论并输入验证码的时候,我以为会接下来爬取到30000左右,可是才爬了3000左右就不行了,还是要输验证码。然后就一直这样,跌跌撞撞,有时候爬取好长时间才需要验证码,有时候则不是。不过最后还是把评论爬取下来了。
爬取的内容主要是:用户名,是否看过,评论的星星点数,评论时间,认为有用的人数,评论内容。参看下图(用户名已隐藏):
这个是影评的起始页:豆瓣影评
以下是Python爬虫的代码:
import requests
import re
import pandas as pd
url_first='https://movie.douban.com/subject/26363254/comments?start=0'
head={'User-Agent':'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)Ubuntu Chromium/59.0.3071.109 Chrome/59.0.3071.109 Safari/537.36'}
html=requests.get(url_first,headers=head,cookies=cookies)
cookies={'cookie':'你自己的cookie'} #也就是找到你的账号对应的cookie
reg=re.compile(r'<a href="(.*?)&.*?class="next">') #下一页
ren=re.compile(r'<span class="votes">(.*?)</span>.*?comment">(.*?)</a>.*?</span>.*?<span.*?class="">(.*?)</a>.*?<span>(.*?)</span>.*?title="(.*?)"></span>.*?title="(.*?)">.*?class=""> (.*?)\n',re.S) #评论等内容
while html.status_code==200:
url_next='https://movie.douban.com/subject/26363254/comments'+re.findall(reg,html.text)[0]
zhanlang=re.findall(ren,html.text)
data=pd.DataFrame(zhanlang)
data.to_csv('/home/wajuejiprince/文档/zhanlang/zhanlangpinglun.csv', header=False,index=False,mode='a+') #写入csv文件,'a+'是追加模式
data=[]
zhanlang=[]
html=requests.get(url_next,cookies=cookies,headers=head)
以上代码注意设置你自己的User-Agent,Cookie,CSV保存路径等。
爬取的内容保存成CSV格式的文件。保存的文件内容如下:
本文用R语言来处理数据。虽然在爬取的时候已经非常注意爬取内容的结构了,但是还是不可避免的有一些值不是我们想要的,比如有的评论内容会出现在评论者这一项中。所以还是有必要进行一下数据的清洗。
首先加载要用到的所有包:
library(data.table)
library(plotly)
library(stringr)
library(jiebaR)
library(wordcloud2)
library(magrittr)
导入数据并清洗:
dt<-fread(file.choose()) #导入数据
dt[,c("V8","V9","V10","V11","V12","V13"):=NULL] #删除空列
#一条命令清洗数据
my_dt<-dt[str_detect(赞成评论数,"\\d+")][评论有用=='有用'][是否看过=="看过"][五星数%in%c("很差","较差","还行","推荐","力荐")]
先来看一看通过星星数评论的情况:
plot_ly(my_dt[,.(.N),by=.(五星数)],type = 'bar',x=~五星数,y=~N)
五角星的个数对应5个等级,5颗星代表力荐,4颗星代表推荐,3颗星代表还行,2颗星代表较差,1颗星代表很差。通过五角星的评论显而易见。我们有理由相信绝大部分观看者对这部影片持满意态度。
wk <- worker()
sw<-function(x){wk<=x}
segwords<-lapply(my_dt[,评论内容],sw)
my_segwords<-unlist(segwords) #不要列表
#去除停止词
st<-readLines(file.choose()) #读取停止词
stopwords<-c(NULL)
for(i in 1:length(st))
{
stopwords[i]<-st[i]
}
seg_Words<-filter_segment(my_segwords,stopwords) #去除中文停止词
words<-table(seg_Words)%>%data.table()
setnames(words,"N","pinshu")
words[pinshu>1000] #去除较低频数的词汇(小于1000的)
wordcloud2(words[pinshu>1000], size = 2, fontFamily = "微软雅黑",color = "random-light", backgroundColor = "grey")
由于数据太多,导致我的破电脑卡顿,所以在制作云图的时候去掉了频数低于1000的词汇。
云图结果如下:
整体来看,大家对这不影片的评论还是不错呀!剧情,动作,爱国等话题是大家谈论的焦点。但是如果把不同评价的人的评论分别展示会是什么样子呢?
也就是对五个等级(力荐,推荐,还行,较差,很差)的评论内容制作云图。代码如下(只要改变代码中力荐为其他即可):
1.力荐的评论人的评论云图
2.推荐的评论人的评论云图
3.还行的评论人的评论云图
4.较差的评论人的评论云图
5.很差的评论人的评论云图
从不同的评论的分词结果来看,他们都有一个共同的话题:爱国。
在力荐的评论中可能爱国话题的基数比很差的评论中的多,在力荐的评论中人们更愿意讨论的是爱国话题之外的事情。在很差的评论中人们讨论的大多是爱国话题。而且他们占的比例很有意思,从力荐的人到评论很差的人,爱国话题的比例逐渐增加。
我们不能主观的认为谁对谁错,只能说他们站在的角度不一样,所以看到的结果也不太一样。当我们和别人意见不同时,往往是所处的角度不同。评论很差的人考虑的更多的是爱国的话题吧(这里只是爱国话题的讨论,并不是谁爱不爱国)!!
作者 / 麦艳涛(挖掘机小王子)
简介 / 数据分析爱好者
微信 / Gorgon---Medusa
邮箱 / 1960958490@qq.com
来源 / 知乎专栏