学界 | AI 自动生成二次元妹子?或将替代插画师部分工作

AI科技评论按:最近二次元爱好者们可能会感觉到了一阵兴奋流遍全身。来自复旦大学、同济大学、卡内基梅隆大学和石溪大学共6位学生(其实本科都在复旦)搭建了一个利用人工智能自动生成精美动漫角色的网站 MakeGirls.moe。

对于用户来说操作非常简单,只需要选择自己喜爱的头发、眼睛、微笑、张嘴等等特征,然后点击“genrate”就可以通过训练出的AI模型来生成一个动漫人物。该网站上线后数天,访问量便增加到10k+每小时。其repo在github trending上也一度排到第四位。该网站所使用的技术在其论文「Create Anime Characters with A.I. !」中进行了详细说明。

其实这并不是第一个将AI应用到动漫当中的模型。2015年Soumith Chintala等人开发DCGAN后不久,就有人将DCGAN应用到了生成动漫角色当中,出现了ChainerDCGAN、IllustrationGAN和AnimeGAN等,三者分别使用了Chainer、TensorFlow和PyTorch的框架,它们本质上都是DCGAN,只是实现方式不同。但这些模型的效果并不是很好,尤其是会出现面部头像模糊和扭曲的问题。在MakeGirls.moe的模型中,作者针对这些问题做出了两方面的改进。

一、使用更高质量的图像库

之前几家,他们训练模型所使用的数据集大多数是使用爬虫从网络上爬下来的,这类图片在质量和画风上参差不齐,甚至还有一些背景。训练数据集质量的低下会给训练造成很大的影响。本文的作者则通过从日本的游戏贩卖商Getchu购买了高质量的图像,这些图像基本出于专业画师之手,同时背景统一。

除了高质量的图像外为了训练网络模型,作者使用了一种基于CNN的图像分析工具Illustration2Vec,对图像中动漫人物的属性,如头发颜色、眼睛颜色、发型和表情等做标记。

此外,在训练的过程中他们还发现发布时间越晚的图片,训练出的模型效果越好。这不难理解,随着游戏角色制作和CG技术的发展,越是现代的图片,细节越丰富,如阴影和头发。所以作者舍弃了2005年之前的全部数据,并过滤掉分辨率低于128*128的图像,用剩下的31255张高质量图像进行训练。

二、模型结构

作者采用了今年5月份发表的DRAGAN模型(https://arxiv.org/pdf/1705.07215.pdf),这种模型所使用的计算量相对较少,收敛较快而且能够产生更稳定的结果。而在优化生成器的过程中,受ACGAN的启发,不仅向生成器提供了标签数据,连“噪声”数据也一并提供,之后再为判别器增加多标签分类功能。

下面展示一下效果——

虽然训练出的模型大多数时候都比较好,但该模型仍然存在一些缺点。问题仍出在数据集中,由于训练数据中各个属性(发色、发型、眼镜、帽子等)的数量分布不均匀,某些属性的生成并不理想(例如眼镜和帽子常常不能生成) ,如果将某些罕见的属性组合,生成的图片甚至会崩溃(例如帽子+眼镜)。也许当增加数据集的数量,训练出的模型生成图片质量可以进一步提高。雷锋网认为,按照此趋势AI或许在不久将替代掉插画师的一部分工作。

访问网站:http://make.girls.moe/(已有训练好的模型,打开就可以尝试生成)

据 AI 科技评论了解,由于突然之间巨大的访问量,网站目前托管在Preferred Networks所提供的AWS上。AWS嘛,你懂的,国内基本就是不能访问的……随后作者可能会做出一定调整。

查看论文:https://makegirlsmoe.github.io/assets/pdf/technical_report.pdf

Github:https://github.com/makegirlsmoe/makegirlsmoe.github.io(目前只有网站的js源码,看介绍训练模型的代码会在近期放出)

本文参考了:「AI可能真的要代替插画师了……」 https://zhuanlan.zhihu.com/p/28488946

原文发布于微信公众号 - AI科技评论(aitechtalk)

原文发表时间:2017-08-20

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏智能算法

深度学习漫游指南:强化学习概览

本文是NVIDIA博客上Tim Dettmers所写的《Deep Learning in a Nutshell》系列文章的第四篇。据介绍,该系列文章的目的是「提...

3175
来自专栏ATYUN订阅号

声音分类的迁移学习

识别我们周围环境中的声音是我们人类每天很轻松就能做到的事情,但是对于计算机相当困难。如果计算机可以准确识别声音,它将会在机器人,安全和许多其他领域得到广泛应用。...

3834
来自专栏人人都是极客

自动驾驶中的时空坐标系

下面我们介绍自动驾驶技术中几种常用的坐标系统,以及他们之间如何完成关联和转换,最终构建出统一的环境模型。 所谓时空坐标系,包括三维空间坐标系和一维时间坐标系。在...

6047
来自专栏大数据文摘

AI小视频 | 原创灵魂手绘,聊个5分钟的人工智能

1846
来自专栏AI科技评论

开发 | Kaggle实战:这才是使用数据降维&可视化工具 HyperTools 的正确姿势!

AI科技评论按:世界首屈一指的机器学习竞赛平台 Kaggle,在今年早些时候推出了基于 Python 的高维数据降维以及可视化处理工具 HyperTools,并...

3335
来自专栏量子位

想让照片里的美女“回头”?清华MIT谷歌用AI帮你实现了

设计师们总是接到这种神奇的需求,但是受限于素材和工具的“想象力”,设计师无法凭空推理出背影女子的正脸是美女还是恐龙,这种需求根本无法达成。

864
来自专栏AI研习社

2017 摩拜杯算法挑战赛,第三名团队解决方案

比赛已经结束快两个月了,一直拖到现在才开始总结。 官网网址:https://biendata.com/competition/mobike/ GitHub源码:...

3966
来自专栏算法channel

深度学习|大师之作,必是精品

1neural networks and deep learning 这是一个非常经典的神经网络和深度学习的教程,有完整的免费的电子书,网址如下: http:/...

3787
来自专栏ATYUN订阅号

AI设计小能手:选个颜色让AI帮你生成logo

生成对抗网络(GAN)已被用于发现新药物,创建令人信服的汉堡和蝴蝶照片,并产生脑癌的合成扫描。而荷兰马斯特里赫特大学(Maastricht University...

1356
来自专栏人工智能头条

基于卷积神经网络(CNN)的中文垃圾邮件检测

882

扫码关注云+社区