独家 | EMNLP 2017 录用论文作者解读:深度残差网络下的弱监督关系抽取

AI 科技评论按:在今年的 EMNLP 2017 上,台湾大学黄意尧与加州圣塔芭芭拉大学 (UCSB)William Wang 教授有一篇合作论文被录用。受AI 科技评论邀请,黄意尧撰写了关于这篇论文的研究历程,以供学习与参考。AI 科技评论做了不改动原意的编辑与修改,将繁体字转换为简体,并将一些台湾常用表述转换为大陆的通用说法。

论文名称:Deep Residual Learning for Weakly-Supervised Relation Extraction

论文地址:https://arxiv.org/abs/1707.08866

近年来,越来越多人关注在关系抽取 (Relation Extraction) 的题目上,大部分的研究集中在使用更复杂、更结构化的神经网络,并测量在 SemEval 2010 的关系抽取数据库上。

但在这个数据库上,最大的问题是数据太少,总共只有 10,717 条数据,导致大部分的模型参数不能太多,要不然会有过度拟合 (over fitting) 的现象发生。

相较於另一个数据库,NYT dataset,总共有 695,059 条数据,採用半监督式学习:distant supervision 来收集数据。这个数据库有足够大的数量来进行大型神经网络的实验。

出於这个动机,本文进行大型神经网络在 NYT dataset 数据库的实验,并提出深度残差网络来解决 distant supervision 带来的噪声干扰。

问题探讨

我们使用卷积神经网络来进行关系抽取,取经於计算机视觉与深度卷积神经网络的成功,我们透过增加层数,来增加神经网络的参数,希望可以帮助关系抽取的学习。结果如图一:

图一、各式卷积网络的结果

但我们却发现,使用 9 层卷积神经网络 (CNN-9) 的效果,并没有单层 (CNN) 的好。这个结果跟过往的经验违背。我们猜测原因是,在 distant supervision 的数据裡面,有太多错误标签的数据,这些数据带来太多的噪声,而这些噪声随著越深层的神经网络而被放大,导致 9 层卷积神经网络 (CNN-9) 的结果比单层 (CNN) 更差。为了解决这个问题,我们使用残差网络,来帮助网络的特征学习。

残差网络在半监督式学习的应用

基于上面的实验,我们知道浅层网络在 distant supervision 的数据库中,能学习到比较好的特征。于是,我们设法让浅层网络的特征,可以跳跃传递至深层网络。

图二,残差网络在关系抽取的架构

如图二所示,我们使用拥有两层卷积网络的残差区块,将浅层网络的特征传到较深层的网络。特过这样的设计,我们可以依照数据库的大小,来堆迭网络架构,让网络可以选择较不被噪声影响的那层网络特征来进行关系分类。

结果

这篇文章,提出一种,解决 distant supervision 噪声对大型网络影响的方法。在表一,我们可以看到,9 层的残差网络,与 state-of-the-art(PCNN+ATT) 的模型,有差不多的结果,并在高顺位候选的关系上,有更棒的效能。证明,利用残差网络,可以在 distant supervision 的数据库中,抽取更有用的特征。

表一,残差网络与其它网络结构的结果比较

结论

本篇文章提供读者、研究人员可以在 distant supervision 的数据库使用大型深度神经网络。但要注意,此种半监督式学习的噪声,会影响到实验结果。利用残差网络可以解决这样的问题,这篇文章在关系抽取的研究上,证明其结果。

文章趣事

本篇文章是我在加州圣塔芭芭拉大学 (UCSB),做交换学生时完成的作品。其实圣塔芭芭拉是一个充满阳光,很美的海滩,每天都可以冲浪、晒太阳、玩水,加上当时课选很少的情况下,觉得生活过得太安逸,决定加入当时新晋教授 William Wang 的实验室,学习相关领域的知识。但没想到,我是实验室前 5 个进来的学生,导致所有知识都要靠自己来,自己吸收与学习。幸运的是,教授有许多时间,跟我讨论题目,但另一方面,我也好像在过一个博士班学生单独奋斗的生活,每天死盯著论文,想理解关系抽取到底发生了什么事。很幸运地,最后我把文章完成,并且顺利的投上 EMNLP。很感谢 William Wang 教授愿意给我机会,与我进行大量的讨论。William Wang 教授在知识图谱的相关研究很厉害,有兴趣的同学,可以申请到他的实验室进行研究。

原文:https://arxiv.org/abs/1707.08866

项目:https://github.com/darrenyaoyao/ResCNN_RelationExtraction

William Wang 教授主页:https://www.cs.ucsb.edu/~william

原文发布于微信公众号 - AI科技评论(aitechtalk)

原文发表时间:2017-09-21

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏PPV课数据科学社区

【干货】近200篇机器学习&深度学习资料分享(上)

编者按:本文收集了百来篇关于机器学习和深度学习的资料,含各种文档,视频,源码等。而且原文也会不定期的更新,望看到文章的朋友能够学到更多。 《Brief Hist...

3936
来自专栏量子位

骗过70%的人!这个AI能自动给视频配音,真假难辨(不服来试)

安妮 发自 凹非寺 量子位 出品 | 公众号 QbitAI 先来做个“真假美猴王”的游戏。 视频内容 你将看到两段画面相同的视频,请判断哪段来自视频原声,哪...

3805
来自专栏华章科技

机器学习的前世今生:一段波澜壮阔的历史

AlphaGo的胜利,无人驾驶的成功,模式识别的突破性进展,人工智能的的飞速发展一次又一次地挑动着我们的神经。作为人工智能的核心,机器学习也在人工智能的大步发展...

1053
来自专栏量子位

怎样让AI完成人类搞不定的任务?OpenAI提出迭代扩增法给AI设目标

OpenAI今天提出了“迭代扩增”(iterated amplification),官方博客介绍说,这是一种AI安全技术,人类能运用这种方法,指导AI去完成那些...

662
来自专栏IT派

亚马逊AI主任科学家李沐:机器学习简介

本书作者跟广大程序员一样,在开始写作前需要来一杯咖啡。我们跳进车准备出发,Alex掏出他的安卓喊一声“OK Google”唤醒语言助手,Mu操着他的中式英语命令...

4286
来自专栏前沿技墅

卷积网络虽动人,胶囊网络更传“神”

1944
来自专栏新智元

从神经科学到计算机视觉:人类与计算机视觉五十年回顾

【新智元导读】本文简单的介绍了神经网络近50年的发展历程,从1968年的Hubel和Wiesel开展的猫实验,一直到李飞飞教授等人的成果。从本质上讲解了人工神经...

2915
来自专栏机器学习之旅

总结:常见算法工程师面试题目整理(二)

答: boost的核心思想不同于bagging,它在基于样本预测结果对照与真实值得差距,进行修正,再预测再修正,逐步靠近正确值。

772
来自专栏AI科技大本营的专栏

如何入门Python与机器学习

本文引自电子工业出版社《Python与机器学习实战》 本书算法与代码兼顾,理论与实践结合。很丰富:7种算法,50段实现,55个实例,总代码量5295行,全面而...

3426
来自专栏新智元

【祖母论与还原论之争】为什么计算机人脸识别注定超越人类?

【新智元导读】 近日, Cell 的一项研究在人脸识别领域引起轰动,研究揭示了灵长类动物人脸识别的具体神经元活动过程——对脸部的识别是由大脑中 200 多个不同...

36211

扫码关注云+社区