从采集到建模:某二手主机游戏交易论坛用户行为分析

作者:陈丹奕 宜人贷 数据分析师

https://ask.hellobi.com/blog/datanaystimprovement/4902?utm_source=tuicool&utm_medum=referral

这次我以一个真实模型为例,给大家详细讲述建模的各个步骤。

照例,先上流程图:

大家可以看到,这个图是由我之前文章中的两张图拼合而来,而我今天讲的这个真实模型,将把图中所有的流程都走一遍,保证一个步骤都不漏。

Step 0:项目背景

话说这个项目跟我加入百度有直接关系……

2013年的最后一天,我结束了在三亚的假期,准备坐飞机回家,这时候接到一个知乎私信,问我对百度的一个数据科学家(其实就是数据分析师啦)职位是否感兴趣,我立刻回信,定了元旦假期以后去面试。两轮面试过后,面试官——也是我加入百度后的直属Leader——打电话给我,说他们对我的经历很满意,但是需要我给他们一份能体现建模能力的报告。

按说这也不是一件难事,但我翻了翻电脑后发现一个问题:我从上家公司离职时,为了装13,一份跟建模相关的报告文件都没带……最后双方商定,我有一个星期时间来做一份报告,这份报告决定了我是否能加入百度。

那么,是时候展示我的技术了!我的回合,抽卡!

Step 1:目标确定

看看报告的要求:

数据最好是通过抓取得来,需要用到至少一种(除描述统计以外)的建模技术,最好有数据可视化的展示

看来是道开放题,那么自然要选择一个我比较熟悉的领域,因此我选择了……《二手主机游戏交易论坛用户行为分析》

为啥选这个呢?你们看了我那么多的Mario图,自然知道我会选主机游戏领域,但为什么是二手?这要说到我待在国企的最后半年,那时候我一个月忙三天,剩下基本没事干,因此泡在论坛上倒卖了一段时间的二手游戏……

咳咳……总之,目标就确定了:分析某二手主机游戏交易论坛上的帖子,从中得出其用户行为的描述,为用户进行分类,输出洞察报告。

Step 2:数据获取

简单来说,就是用python写了个定向爬虫,抓了某个著名游戏论坛的二手区所有的发帖信息,包括帖子内容、发帖人信息等,基本上就是长这个样子:

(打码方式比较简单粗暴,请凑合看吧……)

Step 3:数据清洗

这个模型中的数据清洗,主要是洗掉帖子中的无效信息,包括以下两类:

1、论坛由于其特殊性,很多人成交后会把帖子改成《已出》等标题,这一类数据需要删除:

2、有一部分人用直接贴图的方式放求购信息,这部分体现为只抓到图片链接,需要删除。

数据清洗结束了么?其实并没有,后边会再进行一轮清洗……不过到时再说。

Step 4:数据整理

用上面的那些帖子数据其实是跑不出啥结果的,我们需要把数据整理成可以进一步分析的格式。

首先,我们给每条帖子打标签,标签分为三类:行为类型(买 OR 卖 OR 换),目标厂商(微软 OR 索尼 OR 任天堂),目标对象(主机 OR 游戏软件)。打标签模式是”符合关键词—打相应标签“的方法,关键词表样例如下:

(主机掌机那个标签后来我在实际操作时没有使用)

打完标签之后,会发现有很多帖子没有打上标签,原因有两种:一是关键词没有涵盖所有的产品表述(比如三公主这种昵称),二是有一部分人发的帖子跟买卖游戏无关……

这让人怎么玩……第二次数据清洗开始,把这部分帖子也洗掉吧。

其次,我们用发帖用户作为视角,输出一份用户的统计表格,里边包含每个用户的发帖数、求购次数、出售次数、交换次数、每一类主机/游戏的行为次数等等,作为后续搭建用户分析模型之用。表格大概长这个样子:

之后这个表的列数会越来越多,因为数据重构的工作都在此表中进行。

整理之后,我们准备进行描述统计。

Step 5 & 6:描述统计 & 洞察结论

描述统计在这个项目中的意义在于,描述这一社区的二手游戏及主机市场的基本情况,为后续用户模型的建立提供基础信息。

具体如何进行统计就不说了,直接放成品图,分别是从各主机市场份额、用户相互转化情况、地域分布情况进行的洞察。

Step 7 & 8:选择变量 & 选择算法

因为我要研究的是这些用户与二手交易相关的行为,因此初步选择变量为发帖数量、微软主机拥有台数、索尼主机拥有台数、任天堂主机拥有台数。

算法上面,我们的目标是将用户分群,因此选择聚类,方法选择最简单的K-means算法。

Step 9 & 10:设定参数 & 加载算法

K-means算法除了输入变量以外,还需要设定聚类数,我们先拍脑袋聚个五类吧!

(别笑,实际操作中很多初始参数都是靠拍脑袋得来的,要通过结果来逐步优化)

看看结果:

第一类别的用户数跟总体已经很接近了,完全没有区分度啊!

Step 7‘ & 8’ & 9‘ & 10’ & 11:选择变量 & 选择算法 &设定参数 & 加载算法 &重构变量

这一节你看标题都这么长……

既然我们用原始值来聚类的结果不太好,那么我把原始值重构成若干档次,比如发帖1-10的转换为1,10-50的转换为2,依次类推,再聚一次看看结果。

哦哦!看上去有那么点意思了!不过有一类的数量还是有一点少,我们聚成四类试试:

哦哦,完美! 我们运气不错,一次变量重构就输出了一个看上去还可以的模型结果,接下来去测试一下吧。

Step 12:结果测试

测试过程中,很重要的一步是要看模型的可解释性,如果可解释性较差,那么打回重做……

接下来,我们看看每一类的统计数据:

这个表出来以后,基本上可以对我们聚类结果中的每一类人群进行解读了。结果测试通过!

Step 13 & 14 & 15:输出规则 & 模型加载 & 报告撰写

这个模型不用回朔到系统中,因为仅仅是一个我们用来研究的模型而已。因此,输出规则和模型加载两步可以跳过,直接进入报告撰写。

聚类模型的结果可归结为下图:

我用这张图来说明了洞察结论的重要性,现在你们应该知道这张图是如何得来的了。

撰写报告的另外一部分,在描述统计-洞察结论的过程中已经提到了,把两部分放在一次,加上背景、研究方法等内容,就是完整的报告啦!

最后附送几张各类用户发帖内容中的关键词词云图:

那么,这篇文章就到此结束了,最后的最后,公布一下我做这份报告用到的工具:

大家可以看到,要当一个数据分析师,要用到很多类别的工具,多学一点总是没有坏处的,在此与大家共勉。


原文发布于微信公众号 - 大数据挖掘DT数据分析(datadw)

原文发表时间:2016-09-06

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏大数据挖掘DT机器学习

52 个有用的机器学习与预测API

随着基于人工智能与机器学习的应用如雨后春笋般不断涌现,我们也看到有很多提供类似功能的 API 悄悄登上了舞台。 API 是用于构建软件应用的程序、协议以及工具的...

34610
来自专栏PPV课数据科学社区

【观点】社会网络分析:探索人人网好友推荐系统

image.png 最近四五年间,互联网行 业似乎总是绕不开社交网络这个概念。无论是旗舰级别的传说中的facebook、LinkedIn,还是如雨后春笋般冒...

32712
来自专栏织云平台团队的专栏

T4 级老专家:AIOps 在腾讯的探索和实践

我今天要讲的主题,AIOps,是一个比较新的话题,其实从概念的提出到我们做,只有差不多一年的时间。一个新事物,有其发展的周期,在腾讯里面我们做了比较多的探索,但...

13.7K0
来自专栏MixLab科技+设计实验室

写给设计师的人工智能指南:推荐系统

本期更新第6篇文章, 聊聊“推荐系统”。 推荐系统核心的是推荐算法,常用有这几种: 基于内容推荐 协同过滤推荐 基于关联规则推荐 基于效用推荐 基于知识推荐 组...

2544
来自专栏ATYUN订阅号

俄罗斯研究人员利用神经网络使金属3D打印更加高效

3D打印机需要使用数学模型对定位和控制算法进行微调,以达到最佳性能。这是一个漫长而艰巨的过程,可能需要数周才能设置打印参数。即便如此,仍然存在打印错误的可能性。

742
来自专栏企鹅号快讯

总结:如何操作各大品牌工业机器人——认知篇

在这几年,各大工业机器人制造商,目前都热衷与人机协作,ABB的“玉米”,FANUC的“绿手臂”,KUKA的“伊娃”等等,在人机协作走的比较前的也就数UR了,我们...

2626
来自专栏Albert陈凯

CPU与GPU区别大揭秘

有网友在网上提问:“为什么现在更多需要用的是 GPU 而不是 CPU,比如挖矿甚至破解密码? ”以下是比较准确靠谱的回答:   1、现在更多被需要的依然是CP...

4313
来自专栏IT派

Top 20-Python 机器学习开源项目

导语:KDnuggets 为您带来 Github 上最新的 Python 机器学习开源项目前 20 名。奇怪的是,去年一些非常活跃的项目渐渐停滞了,因此没能上榜...

3268
来自专栏大数据文摘

2016年2季度爆文精选 TOP10

1968
来自专栏数据的力量

如何选择合适的数据图表?

1454

扫码关注云+社区