前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >从采集到建模:某二手主机游戏交易论坛用户行为分析

从采集到建模:某二手主机游戏交易论坛用户行为分析

作者头像
机器学习AI算法工程
发布2018-03-14 12:05:46
1.4K0
发布2018-03-14 12:05:46
举报
文章被收录于专栏:机器学习AI算法工程

作者:陈丹奕 宜人贷 数据分析师

https://ask.hellobi.com/blog/datanaystimprovement/4902?utm_source=tuicool&utm_medum=referral

这次我以一个真实模型为例,给大家详细讲述建模的各个步骤。

照例,先上流程图:

大家可以看到,这个图是由我之前文章中的两张图拼合而来,而我今天讲的这个真实模型,将把图中所有的流程都走一遍,保证一个步骤都不漏。

Step 0:项目背景

话说这个项目跟我加入百度有直接关系……

2013年的最后一天,我结束了在三亚的假期,准备坐飞机回家,这时候接到一个知乎私信,问我对百度的一个数据科学家(其实就是数据分析师啦)职位是否感兴趣,我立刻回信,定了元旦假期以后去面试。两轮面试过后,面试官——也是我加入百度后的直属Leader——打电话给我,说他们对我的经历很满意,但是需要我给他们一份能体现建模能力的报告。

按说这也不是一件难事,但我翻了翻电脑后发现一个问题:我从上家公司离职时,为了装13,一份跟建模相关的报告文件都没带……最后双方商定,我有一个星期时间来做一份报告,这份报告决定了我是否能加入百度。

那么,是时候展示我的技术了!我的回合,抽卡!

Step 1:目标确定

看看报告的要求:

数据最好是通过抓取得来,需要用到至少一种(除描述统计以外)的建模技术,最好有数据可视化的展示

看来是道开放题,那么自然要选择一个我比较熟悉的领域,因此我选择了……《二手主机游戏交易论坛用户行为分析》

为啥选这个呢?你们看了我那么多的Mario图,自然知道我会选主机游戏领域,但为什么是二手?这要说到我待在国企的最后半年,那时候我一个月忙三天,剩下基本没事干,因此泡在论坛上倒卖了一段时间的二手游戏……

咳咳……总之,目标就确定了:分析某二手主机游戏交易论坛上的帖子,从中得出其用户行为的描述,为用户进行分类,输出洞察报告。

Step 2:数据获取

简单来说,就是用python写了个定向爬虫,抓了某个著名游戏论坛的二手区所有的发帖信息,包括帖子内容、发帖人信息等,基本上就是长这个样子:

(打码方式比较简单粗暴,请凑合看吧……)

Step 3:数据清洗

这个模型中的数据清洗,主要是洗掉帖子中的无效信息,包括以下两类:

1、论坛由于其特殊性,很多人成交后会把帖子改成《已出》等标题,这一类数据需要删除:

2、有一部分人用直接贴图的方式放求购信息,这部分体现为只抓到图片链接,需要删除。

数据清洗结束了么?其实并没有,后边会再进行一轮清洗……不过到时再说。

Step 4:数据整理

用上面的那些帖子数据其实是跑不出啥结果的,我们需要把数据整理成可以进一步分析的格式。

首先,我们给每条帖子打标签,标签分为三类:行为类型(买 OR 卖 OR 换),目标厂商(微软 OR 索尼 OR 任天堂),目标对象(主机 OR 游戏软件)。打标签模式是”符合关键词—打相应标签“的方法,关键词表样例如下:

(主机掌机那个标签后来我在实际操作时没有使用)

打完标签之后,会发现有很多帖子没有打上标签,原因有两种:一是关键词没有涵盖所有的产品表述(比如三公主这种昵称),二是有一部分人发的帖子跟买卖游戏无关……

这让人怎么玩……第二次数据清洗开始,把这部分帖子也洗掉吧。

其次,我们用发帖用户作为视角,输出一份用户的统计表格,里边包含每个用户的发帖数、求购次数、出售次数、交换次数、每一类主机/游戏的行为次数等等,作为后续搭建用户分析模型之用。表格大概长这个样子:

之后这个表的列数会越来越多,因为数据重构的工作都在此表中进行。

整理之后,我们准备进行描述统计。

Step 5 & 6:描述统计 & 洞察结论

描述统计在这个项目中的意义在于,描述这一社区的二手游戏及主机市场的基本情况,为后续用户模型的建立提供基础信息。

具体如何进行统计就不说了,直接放成品图,分别是从各主机市场份额、用户相互转化情况、地域分布情况进行的洞察。

Step 7 & 8:选择变量 & 选择算法

因为我要研究的是这些用户与二手交易相关的行为,因此初步选择变量为发帖数量、微软主机拥有台数、索尼主机拥有台数、任天堂主机拥有台数。

算法上面,我们的目标是将用户分群,因此选择聚类,方法选择最简单的K-means算法。

Step 9 & 10:设定参数 & 加载算法

K-means算法除了输入变量以外,还需要设定聚类数,我们先拍脑袋聚个五类吧!

(别笑,实际操作中很多初始参数都是靠拍脑袋得来的,要通过结果来逐步优化)

看看结果:

第一类别的用户数跟总体已经很接近了,完全没有区分度啊!

Step 7‘ & 8’ & 9‘ & 10’ & 11:选择变量 & 选择算法 &设定参数 & 加载算法 &重构变量

这一节你看标题都这么长……

既然我们用原始值来聚类的结果不太好,那么我把原始值重构成若干档次,比如发帖1-10的转换为1,10-50的转换为2,依次类推,再聚一次看看结果。

哦哦!看上去有那么点意思了!不过有一类的数量还是有一点少,我们聚成四类试试:

哦哦,完美! 我们运气不错,一次变量重构就输出了一个看上去还可以的模型结果,接下来去测试一下吧。

Step 12:结果测试

测试过程中,很重要的一步是要看模型的可解释性,如果可解释性较差,那么打回重做……

接下来,我们看看每一类的统计数据:

这个表出来以后,基本上可以对我们聚类结果中的每一类人群进行解读了。结果测试通过!

Step 13 & 14 & 15:输出规则 & 模型加载 & 报告撰写

这个模型不用回朔到系统中,因为仅仅是一个我们用来研究的模型而已。因此,输出规则和模型加载两步可以跳过,直接进入报告撰写。

聚类模型的结果可归结为下图:

我用这张图来说明了洞察结论的重要性,现在你们应该知道这张图是如何得来的了。

撰写报告的另外一部分,在描述统计-洞察结论的过程中已经提到了,把两部分放在一次,加上背景、研究方法等内容,就是完整的报告啦!

最后附送几张各类用户发帖内容中的关键词词云图:

那么,这篇文章就到此结束了,最后的最后,公布一下我做这份报告用到的工具:

大家可以看到,要当一个数据分析师,要用到很多类别的工具,多学一点总是没有坏处的,在此与大家共勉。


本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2016-09-06,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 大数据挖掘DT数据分析 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • Step 0:项目背景
  • Step 1:目标确定
  • Step 2:数据获取
  • Step 3:数据清洗
  • Step 4:数据整理
  • Step 5 & 6:描述统计 & 洞察结论
  • Step 7 & 8:选择变量 & 选择算法
  • Step 9 & 10:设定参数 & 加载算法
  • Step 7‘ & 8’ & 9‘ & 10’ & 11:选择变量 & 选择算法 &设定参数 & 加载算法 &重构变量
  • Step 12:结果测试
  • Step 13 & 14 & 15:输出规则 & 模型加载 & 报告撰写
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档