计算广告——广告定向实践

计算广告学涉及到很多的不同的学科知识,包括大规模搜索,文本分析,机器学习,信息检索以及经济学等等。在计算广告中,其核心问题是在给定的环境下,找到用户和广告之间的最佳匹配,在斯坦福大学的计算广告学中如下的定义:

Computational advertising = A principled way to find the “best match” between a user in a context and a suitable ad.

对于一条指定的广告,为了寻找用户与广告之间的最佳匹配,需要从大量的候选用户,挑选出对本条广告感兴趣的用户,这就牵涉到广告定向的相关技术。

一、广告定向的分类

这部分的内容主要参照参考文献1。

  • 人群属性定向(Demographic Targeting):主要指基于用户基本属性,包括年龄,性别等定向。如将化妆品类的广告投放给女性用户。
  • 行为定向(Behavioral Targeting):指的是基于用户的历史行为数据挖掘用户的兴趣,如微博中用户对博文的转,评,赞等数据。
  • 地理位置的定向(Geo Targeting):指的是利用移动设备记录用户的地理位置,投放相应的广告,如餐厅广告的投放。
  • 相似用户的定向(Look-Alike Targeting):指的是利用已经找出的一些人,找到与其相似的用户进行定向。

还有很多的定向技术,在本文中,结合具体的广告形态,重点介绍一下行为定向以及相似用户的定向。

二、基于用户行为的广告定向

2.1、广告实践的背景

对于信息流类的广告产品,也称为原生广告,即广告的展示样式与自然内容基本上一致,这一点通常也称为“表现原生”。基于信息流的广告产品有很多,如微信的朋友圈,微博,QQ空间,今日头条等等。下面展示了微信的朋友圈,微博以及QQ空间的信息流广告:

  • 微信的朋友圈
  • 微博
  • QQ空间

2.2、基于用户行为的广告定向

对于索引的生成,这里简单介绍离线的数据挖掘+在线索引的方法,整体架构包括离线数据挖掘部分以及在线索引部分,具体架构如下图所示:

对于上述的社交类的信息流中的广告,其用户的行为主要包括转发,评论,点赞,收藏以及点击短链,且每一种行为的强度也是不一样的,转发的强度是最高的,代表的用户的兴趣是刻画的最清晰的一种行为。基于用户的行为的广告定向大致有如下的几种形式:

2.2.1、基于互动内容的行为定向

基于互动内容的行为定向是指利用一些机器学习或者文本处理的方法提取出用户互动的文本中的核心词,以核心词作为用户的标签,当有新的广告时,提取出广告中的核心词,与用户的标签进行匹配,大致的架构如下图所示:

2.2.2、基于与广告主互动的行为定向

基于与广告主互动的行为定向是指将广告主的广告投放给与其发布的信息(广告或者非广告)有过互动的一些用户,这些与广告主有过互动的用户在一定程度上对广告主发布的信息有着不同的兴趣。

注意:这里的用户有一部分是该广告主的粉丝或者好友,要排除这一部分的用户。

基本的过程是提取出与广告主在一定时间内互动过的用户,当该广告主发布新的广告时将广告投放给这些潜在的用户,基本的架构如下图所示:

2.2.3、基于话题的行为定向

在社交网络中,通过##标记可以将一部分文本标记为话题。话题代表了该信息的大致主题,提取出用户在一段时间内互动过的博文中的话题,作为该用户的兴趣标签,当新的广告中同样包含话题时,提取出广告中包含的话题,通过广告中的话题与用户的兴趣标签进行匹配,选择出该广告的受众,将广告投放给这部分用户,大致的架构如下图所示:

三、基于相似用户的广告定向

相似用户是指具有某些相同属性的用户的集合,通过某种相似性的度量的方法将具有某种共同属性的用户聚类到一起作为一个集合,当广告与某个集合的主题一致时,可以将该广告投放给该集合中的用户。

3.1、基于@人的广告定向

在社交网络中,可以通过@标记来标记一个用户。通常一个用户与其粉丝大致分为两种关系:

  • 社交关系:如亲戚朋友,同事,同学等
  • 兴趣关系:如###爱好者

当一条信息中包含了@标记,说明该信息与被@的用户有关系,可以将这条关系投放给其粉丝,大致的架构如下图所示:

3.2、基于社区的广告定向

社区划分是社交网络中研究比较多的一个话题,对于不同结构的社交网络有不同的社区划分算法,如在前面涉及到的:

还有很多其他的社区划分的方法,这里就不一一介绍了。社区划分算法通过某种方式将用户划分到不同的社区中,社区内部的关系较为强烈,社区与社区之间有比较明显的界限。

当有广告需要投放时,选择某几个社区,将广告投放给社区中人,选择社区的方式有很多,如:

  • 广告与社区标签的匹配
  • 广告主所在的社区
  • 等等

以广告主所在的社区为例,其大致的架构如下图所示:

四、各种定向技术的效果以及评价

上面主要介绍了两大类的广告定向技术:基于用户行为的广告定向和基于相似用户的广告定向。在每一个类别中,针对具体的应用问题又有不同的定向方法,上面以社交网络中的广告定向为例,介绍了:

  • 基于互动内容的行为定向
  • 基于与广告主互动的行为定向
  • 基于话题的行为定向
  • 基于@人的广告定向
  • 基于社区的广告定向

衡量广告的投放效果通常的指标有互动率或者是转化率,这里,我们以互动率为例,详细的互动率如下图所示:

其中,1分钟的,硬盘版和一天mc指的是不同时间的基于互动内容的行为定向。

从上述的互动率也更加验证了以下的几点:

  • 互动内容的行为定向具有时效性,互动行为距离广告投放时间越近,效果越好
  • 与广告主互动以及话题具有明显的兴趣标签
  • 社区的定向范围比较大,效果并不是很多,但是量比较大,作为量的补充

以上是我的个人总结,有任何错误还希望能不吝指出。

参考文献

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏企鹅号快讯

为什么要利用NLP做情感分析?

作者:申利彬 校对:孙涛 本文谈论自然语言处理中的情感分析及其在不同行业中的应用。 多数人不能准确把握人类的情感变化,我也不例外,但是计算机却可以做到这一点。基...

20760
来自专栏深度学习之tensorflow实战篇

新媒体指数评价方法:相应计算公式

在对平面媒体的广告价值进行研究的过程中,主要考虑四个方面的因素:一、媒体的受众规模;二、媒体的受众构成;三、媒体对受众影响力;四、广告主对媒体的接受度。...

28930
来自专栏互联网数据官iCDO

分析Facebook上的视频广告的三种思路

译者:李子怡 你的Facebook营销战略中有视频的一席之地吗? 想了解在Facebook中视频如何为你服务吗? 想在FB上制定合理的视频投放决策,就要先弄清楚...

68380
来自专栏数据科学与人工智能

【数据科学】数据科学入门指南

数据科学虽然刚刚兴起,却发展迅速。 只要有数据的地方,就需要数据科学团队来分析、挖掘数据。 因而,在各个行业都需要大量的数据科学家。 2015年,数据科学家的平...

24890
来自专栏TEG云端专业号的专栏

【kieranliu(刘晓江)】AI入门从用机器学习解决某个实际工作问题开始

kieranliu(刘晓江),2016年9月加入TEG AI Lab,之前在微软亚洲研究院从事自然语言研究,拥有10年的自然语言研究和开发经验。“自然语言处理高...

43470
来自专栏FreeBuf

谷歌开源人工智能系统TensorFlow

谷歌于周一发布全新人工智能系统TensorFlow。该系统可被用于语音识别或照片识别等多项机器深度学习领域。谷歌表示,TensorFlow将完全开源,可被运行于...

23890
来自专栏大数据挖掘DT机器学习

数据挖掘工程师在公司中一般都具体做什么?需要了解哪些知识?

以后想从事数据挖掘行业,但不清楚数据挖掘工程师的工作到底是做什么? 如果仅仅只是用excel,sas,python,r语言等工具来用现有的算法...

37150
来自专栏数据科学与人工智能

【数据分析】数据分析中的六脉神剑

了解数据分析 1定义 · 数据分析是什么? 简单地说就是利用有限的数据通过发散的思维,利用相关关系来解释你想知道的问题。 2目的 · 数据分析干什么? 把隐藏在...

26680
来自专栏大数据文摘

Facebook最新研究:我们训练机器人讨价还价,没想到AI还自己学会了“使诈”(附论文)

16010
来自专栏喔家ArchiSelf

老码农眼中的简明AI

就像每个人眼中都有一个自己的哈姆雷特一样,每一个看AI 都是不一样的。作为一个老程序员,也只是一个工作时间长一些的程序员而已,本没有什么资格定义AI,但是面对这...

7430

扫码关注云+社区

领取腾讯云代金券