Python文本挖掘:基于共现提取《釜山行》人物关系

《釜山行》是一部丧尸灾难片,其人物少、关系简单,非常适合我们学习文本处理。这个项目将介绍共现在关系中的提取,使用python编写代码实现对《釜山行》文本的人物关系提取,最终利用Gephi软件对提取的人物关系绘制人物关系图。实体间的共现是一种基于统计的信息提取。关系紧密的人物往往会在文本中多段内同时出现,可以通过识别文本中已确定的实体(人名),计算不同实体共同出现的次数和比率。当比率大于某一阈值,我们认为两个实体间存在某种联系。这种联系可以具体细化,但提取过程也更加复杂。因此在此课程只介绍最基础的共现网络。 1.开发环境 剧本

http://7xktmz.com1.z0.glb.clouddn.com/Train%20to%20Busan.txt

字典

http://labfile.oss.aliyuncs.com/courses/677/dict.txt

gephi Python2+jieba库 2.实验过程 开始编写我们的代码。

import os, sys

import jieba, codecs, math

import jieba.posseg as pseg

names = {}

relationships = {}

lineNames = []

字典类型names保存人物,该字典的键为人物名称,值为该人物在全文中出现的次数。字典类型relationships保存人物关系的有向边,该字典的键为有向边的起点,值为一个字典edge,edge的键是有向边的终点,值是有向边的权值,代表两个人物之间联系的紧密程度。lineNames是一个缓存变量,保存对每一段分词得到当前段中出现的人物名称,lineNames[i]是一个列表,列表中存储第i段中出现过的人物。

jieba.load_userdict("dict.txt")

with codecs.open("to_train.txt", "r", "utf8") as f:

for line in f.readlines():

poss = pseg.cut(line)

lineNames.append([])

for w in poss:

if w.flag != "nr" or len(w.word) < 2:

continue

lineNames[-1].append(w.word)

if names.get(w.word) is None:

names[w.word] = 0

relationships[w.word] = {}

names[w.word] += 1

在具体实现过程中,读入剧本的每一行,对其做分词。提取该行中出现的人物集存入lineNames中。之后对出现的人物,更新他们在names中的出现次数。

for line in lineNames:

for name1 in line:

for name2 in line:

if name1 == name2:

continue

if relationships[name1].get(name2) is None:

relationships[name1][name2]= 1

else:

relationships[name1][name2] = relationships[name1][name2]+ 1

对于lineNames中每一行,我们为该行中出现的所有人物两两相连。如果两个人物之间尚未有边建立,则将新建的边权值设为1,否则将已存在的边的权值加1。这种方法将产生很多的冗余边,这些冗余边将在最后处理。

with codecs.open("node.txt", "w", "gbk") as f:

f.write("Id Label Weight\r\n")

for name, times in names.items():

f.write(name + " " + name + " " + str(times) + "\r\n")

with codecs.open("edge.txt", "w", "gbk") as f:

f.write("Source Target Weight\r\n")

for name, edges in relationships.items():

for v, w in edges.items():

if w > 3:

f.write(name + " " + v + " " + str(w) + "\r\n")

将已经建好的names和relationships输出到文本,以方便gephi可视化处理。输出边的过程中可以过滤可能是冗余的边,这里假设共同出现次数少于3次的是冗余边,则在输出时跳过这样的边。 完整的代码如下。

运行得到节点集合node.txt,边集合edge.txt。

下面使用gephi这个软件来将人物关系可视化。启动gephi,分别选择节点表格和边表格导入上面代码中生成的两个文件,分隔符选择空格,编码选择GB2312。

可以在最上方的数据资料选项卡中查看图中所有的边和节点,对于分词不准确导致的噪音可以手动删除。分别点击右侧统计栏中平均度和模块化运行计算。模块化运算时Resolution值填写0.5。

点击左上角外观中节点第一个选项卡,选择数值设定,选择Modularity Class,点击应用。

点击左上角外观中节点第二个选项卡,选择数值设定,选择连入度,最小尺寸填10,最大尺寸填40,点击应用。

选择左下角布局中的Force Atlas,斥力强度填写20000.0,吸引强度填写 1.0。点击运行,稍后点击停止。

点染色根据模块化计算结果不定,但染色效果大致相同。点击最上方的预览按钮,选中左侧节点标签中显示标签选项,并选择一种字体。

点击刷新按钮,右侧显示最终的人物关系图。为了优化显示的效果,还可以调整左边的参数。

原文发布于微信公众号 - 大数据挖掘DT数据分析(datadw)

原文发表时间:2017-09-15

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏新智元

深度学习开源框架PaddlePaddle发布新版API,简化深度学习编程

【新智元导读】 本文来自百度PaddlePaddle团队成员骆涛,他在文章中介绍了百度深度学习开源框架Paddlepaddle新推出的API,它们能更好地支持分...

31370
来自专栏吉浦迅科技

为啥在Matlab上用NVIDIA Titan V训练的速度没有GTX1080快?

在Matlab官方论坛上看到这个帖子,希望给大家带来参考 有一天,有人在Matlab的论坛上发出了求救帖: ? 楼主说: 我想要加快我的神经网络训练,所以把G...

59080
来自专栏Crossin的编程教室

【每周一坑】生成九宫格图片

非常简单的功能,但在开发中很常见,很多网页/应用里缩略图都是对图片进行缩放+切割得到的。

14630
来自专栏瓜大三哥

IO约束(下)

Output接口类型和约束 FPGA 做Output 的接口时序同样也可以分为系统同步和源同步。在设置XDC约束时,总体思路与Input类似,只是换成要考虑下游...

27570
来自专栏落花落雨不落叶

写了个学习正则的小工具

34560
来自专栏SeanCheney的专栏

阿姆达尔定律和古斯塔夫森定律摘要背景建议使用指南更多资源

摘要 构建软件的并行版本可使应用在更短的时间内运行指定的数据集,在固定时间内运行多个数据集,或运行非线程软件禁止运行的大型数据集。 并行化的成功通常通过测量并行...

33260
来自专栏郭耀华‘s Blog

2018年奇虎360春招笔试题--玫瑰花

15220
来自专栏落花落雨不落叶

写了个学习正则的小工具

13130
来自专栏游戏开发那些事

【Unity游戏开发】UGUI不规则区域点击的实现

  马三从上一家公司离职了,最近一直在出去面试,忙得很,所以这一篇博客拖到现在才写出来。马三在上家公司工作的时候,曾处理了一个UGUI不规则区域点击的问题,制作...

34530
来自专栏北京马哥教育

搭建python机器学习环境以及一个机器学习例子

作者 | hzyido 来源 | 简书 糖豆贴心提醒,本文阅读时间6分钟,文末有秘密! 这篇文章介绍了Python机器学习环境的搭建,我用的机器学习开...

620120

扫码关注云+社区

领取腾讯云代金券