Tensorflow:基于LSTM轻松生成各种古诗

RNN不像传统的神经网络-它们的输出输出是固定的,而RNN允许我们输入输出向量序列。RNN是为了对序列数据进行建模而产生的。

样本序列性:样本间存在顺序关系,每个样本和它之前的样本存在关联。比如说,在文本中,一个词和它前面的词是有关联的;在气象数据中,一天的气温和前几天的气温是有关联的。

例如本帖要使用RNN生成古诗,你给它输入一堆古诗词,它会学着生成和前面相关联的字词。如果你给它输入一堆姓名,它会学着生成姓名;给它输入一堆古典乐/歌词,它会学着生成古典乐/歌词,甚至可以给它输入源代码。

关于RNN:

  • TensorFlow练习3: RNN, Recurrent Neural Networks
  • http://karpathy.github.io/2015/05/21/rnn-effectiveness/

本帖代码移植自char-rnn,https://github.com/karpathy/char-rnn

它是基于Torch的洋文模型,稍加修改即可应用于中文。char-rnn使用文本文件做为输入、训练RNN模型,然后使用它生成和训练数据类似的文本。

使用的数据集:全唐诗(43030首):

本文代码在公众号 datadw 里 回复 古诗 即可获取。

模型生成

首先我们要训练好模型。这里采用的是2层的LSTM框架,每层有128个隐藏层节点,batch_size设为64。训练数据来源于全唐诗(可在上面百度云资源分享当中找到)。特别注意到的一点是这里每训练完一次就对训练数据做shuffle。 源代码如下:

使用该代码会将训练好的模型参数保存在 “model” 文件夹下。经过100个epoch之后,平均loss会降到2.6左右。训练好的模型在公众号 datadw 里 回复 古诗 即可获取。

生成古诗

使用训练好的模型可以轻松生成各种古诗。 下面就是几个例子:

生成藏头诗

上代码:

最后从函数接口可以看到,除了可以自己定义诗的头外,还可以定义是五言绝句还是七言绝句。 来看几个五言绝句的例子:

再来看几个七言绝句的例子:

那么是不是可以用它来写情诗呢? 当然可以啦!

via http://blog.csdn.net/u014232627/article/details/71189078

原文发布于微信公众号 - 大数据挖掘DT数据分析(datadw)

原文发表时间:2018-01-06

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏云时之间

深度学习与神经网络:mnist数据集实现手写数字识别

对于mnist数据集,具体的一些介绍我这里就不搬运过来了,这里我直接说我们如何在TensorFlow上使用mnist数据集.

38211
来自专栏AI科技评论

深度丨机器学习零基础?手把手教你用TensorFlow搭建图像识别系统(三)

AI科技评论按:本文是介绍用TensorFlow构建图像识别系统的第三部分。 在前两部分中,我们构建了一个softmax分类器来标记来自CIFAR-10数据集的...

3666
来自专栏和蔼的张星的图像处理专栏

4. 经典卷积网络之AlexNet

原文:《ImageNet Classification with Deep Convolutional Neural Networks》 我没有读原文,这个已...

1592
来自专栏机器之心

资源 | GitHub新项目:轻松使用多种预训练卷积网络抽取图像特征

选自GitHub 机器之心整理 参与:思源 最近 GitHub 有一个非常有意思的项目,它可以使用多种预训练 TensorFLow 模型计算图像特征。对于每一个...

3166
来自专栏人工智能LeadAI

什么!卷积要旋转180度?!

一看这个标题就会想,这有什么大惊小怪的,可能好多人觉得这是个脑残话题,但我确实误解了两三年……

1411
来自专栏PaddlePaddle

【目标检测】SSD目标检测

场景文字识别 目标检测任务的目标是给定一张图像或是视频帧,让计算机找出其中所有目标的位置,并给出每个目标的具体类别。对于人类来说,目标检测是一个非常简单的任务。...

5369
来自专栏云时之间

深度学习与神经网络:mnist数据集实现手写数字识别

3654
来自专栏刁寿钧的专栏

使用 Tensorflow 构建 CNN 进行情感分析实践

本次实验参照的是 Kim Yoon 的论文,代码放在我的 github 上,可直接使用。

3K1
来自专栏贾志刚-OpenCV学堂

干货 | Tensorflow设计简单分类网络实现猫狗图像分类训练与测试

第一层:32个feature map 5x5卷积、步长为2、最大值池化 局部相应归一化处理(LRN) 第二层:64个feature map 3x3卷积、步长为...

5144
来自专栏PaddlePaddle

【文本分类】基于双层序列的文本分类模型

导语 PaddlePaddle提供了丰富的运算单元,帮助大家以模块化的方式构建起千变万化的深度学习模型来解决不同的应用问题。这里,我们针对常见的机器学习任务,提...

2973

扫码关注云+社区

领取腾讯云代金券