Facebook 开源 CV 开发平台 Detectron,打包支持各种物体识别算法

Facebook 人工智能实验室今日宣布开源自己的顶级物体检测研究平台 Detectron,为广大研究人员们未来的新计算机视觉研究课题提供灵活、快速的模型实现和评估途径。

据 Facebook 介绍,Detectron 项目最初开始于 2016 年 7 月,当时的目的是在 Caffe2 的基础上建立一个快速、灵活的物体检测系统,内部开发过程也就从此开始。经过一年半的开发之后,代码库已经成熟了,而且其中集成了许多 Facebook 自己的研究项目,包括在 ICCV 2017 上获得最佳论文奖(马尔奖)的《Mask R-CNN》和获得最佳学生论文奖的《检测密集物体时的焦距损失》两篇论文中的算法,以及更早更广泛使用的 R-CNN 算法家族等。这些由 Detectron 在背后支持的算法为实例分割之类的重要计算机视觉任务提供了直观的模型,也在视觉感知系统这一整个研究社区的研究重点近几年的飞速发展中起到了重要作用。

除了本来计划的研究用途之外,也有一些 Facebook 团队用这个平台训练自定义模型,并把它们用在增强现实、社区完整性等各种各样的任务中。在 Detectron 中训练完毕的模型可以直接通过高效的 Caffe 2 运行时部署在云服务器和移动设备上。

这次 Facebook 开源 Detectron 也是希望让他们的研究尽可能开放,并且帮助加速全世界的实验室的研究进度。在这个版本发布以后,整个研究社区都可以重复 Facebook 论文中的实验结果,并且可以和 Facebook 人工智能实验室使用同样的软件平台。Detectron 的 GitHub 项目中还带有超过 70 个预训练的基准模型可以用于性能对比。

GitHub 地址:https://github.com/facebookresearch/Detectron

本文分享自微信公众号 - AI研习社(okweiwu)

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2018-01-24

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏云时之间

关于语言模型的一些新理解

这几天又陆陆续续的读了关于一些关于NLP上语言模型的书籍,简单总结了下自己的新的认识: 一:语言模型的性能评价: 1:语言模型的评价目标: 语言模型的计算的概...

27150
来自专栏ATYUN订阅号

OpenAI和DeepMind的AI智能体在两个Atari游戏中表现优于人类

通过观看人类来学习玩游戏的智能体研究又有了新进展。OpenAI和DeepMind在发表的一篇论文“Reward learning from human pref...

13630
来自专栏新智元

TensorFlow开源一周年,已成Github最受欢迎机器学习项目(新智元报道盘点)

【新智元导读】11月10日,是谷歌大脑团队开源TensorFlow一周年的纪念日。在过去的一年中,TensorFlow发展迅速,已经成为Github上最受欢迎的...

401130
来自专栏机器学习AI算法工程

阿里深度学习实践

近年来,随着大数据在互联网的蓬勃发展,很多人工智能的技术、应用像雨后春笋般涌现出来,如谷歌、Facebook、阿里、腾讯、百度等用得非常广泛,且各种应用都通过...

32160
来自专栏Spark学习技巧

深入浅出推荐系统之简单推荐模型

18330
来自专栏about云

数据挖掘快速入门

问题导读 1.什么是数据挖掘? 2.机器学习 与 数据挖掘在什么地方? 3.数据挖掘能解决什么问题? 1 数据挖掘 数据挖掘(Data Mining,简...

38880
来自专栏人工智能头条

关于机器学习 你不得不思考这些问题

16840
来自专栏机器之心

前沿 | 物理学家提出新算法:将量子机器学习扩展到无限维度

选自phys.org 作者:Lisa Zyga 机器之心编译 参与:吴攀、李亚洲 物理学家已经开发出了一种可以处理无限维度(infinite dimensio...

31580
来自专栏AI科技评论

开发 | Kaldi集成TensorFlow,两个开源社区终于要一起玩耍了

AI科技评论按:自动语音识别(Automatic speech recognition,ASR)领域被广泛使用的开源语音识别工具包 Kaldi 现在也集成了Te...

83160
来自专栏ATYUN订阅号

DeepMind最新论文:探索智能体对齐,使AI用符合用户意图的方式解决问题

DeepMind发布了新论文,概述了解决智能体对齐问题的研究方向。我们的方法依赖于奖励建模的递归应用,以符合用户意图的方式解决复杂的现实问题。

11120

扫码关注云+社区

领取腾讯云代金券