# R包—iGraph

1.用igraph创建图表

``` g<- graph(c(1,2, 1,3, 1,4, 2,4, 3,4), directed=T)
> g IGRAPH D--- 4 5 --
> plot(g, layout=layout.fruchterman.reingold)```

2.创建多种图形的图表

``` > g1 <- graph.full(4) > g1 IGRAPH U--- 4 6 -- Full graph + attr: name (g/c), loops (g/x)
> g2 <- graph.ring(3) > g2 IGRAPH U--- 3 3 -- Ring graph + attr: name (g/c), mutual (g/x), circular (g/x)
> g3 = graph.lattice(c(3,4,2))#create a lattice > g3 IGRAPH U--- 24 46 -- Lattice graph + attr: name (g/c), dimvector (g/n), nei (g/n), mutual (g/x), circular (g/x)
>g4 = graph.tree(50, children=2)#create a tree > g4 IGRAPH D--- 50 49 -- Tree + attr: name (g/c), children (g/n), mode (g/c)
>plot(g4,layout=layout.fruchterman.reingold,vertex.label.dist=0.3,edge.arrow.size=0.5,vertex.color="red") ```

3.随机图表和优先连接的生成

``` > g <- erdos.renyi.game(20, 0.2)#create a random graph and fix probability
> g IGRAPH U--- 20 43 -- Erdos renyi (gnp) graph + attr: name (g/c), type (g/c), loops (g/x), p (g/n)
> plot(g, layout=layout.fruchterman.reingold, vertex.label=NA, vertex.size=5,vertex.color="green")

> g <- erdos.renyi.game(20, 15, type='gnm')# Generate random graph, fixed number of arcs > g IGRAPH U--- 20 15 -- Erdos renyi (gnm) graph + attr: name (g/c), type (g/c), loops (g/x), m (g/n)
> plot(g, layout=layout.reingold.tilford, vertex.label=NA, vertex.size=5,vertex.color="green") ```

4.简单图表的算法

``` g <- erdos.renyi.game(12, 0.35) > g IGRAPH U--- 12 21 -- Erdos renyi (gnp) graph + attr: name (g/c), type (g/c), loops (g/x), p (g/n)
> E(g)\$weight <- round(runif(length(E(g))),2) * 50#Create the graph and assign random edge weights

> mst <- minimum.spanning.tree(g)#Compute the minimum spanning tree > mst IGRAPH U-W- 12 11 -- Erdos renyi (gnp) graph + attr: name (g/c), type (g/c), loops (g/x), p (g/n), weight (e/n) ```

```> pa <- get.shortest.paths(g, 5, 9)[[1]]
> pa
[1] 5 3 9
> V(g)[pa]\$color <- 'green'
> E(g)\$color <- 'grey'
> E(g, path=pa)\$color <- 'red'
> E(g, path=pa)\$width <- 3
> plot(g, layout=layout.fruchterman.reingold)

> plot(mst, layout=layout.reingold.tilford, edge.label=E(mst)\$weight)
> plot(g, layout=layout.fruchterman.reingold, edge.label=E(g)\$weight)
```

http://blog.sina.com.cn/s/blog_60034d4a0101e12h.html

588 篇文章69 人订阅

0 条评论

## 相关文章

51218

9127

4298

3948

3016

5805

### 【实践操作】：六步教你如何用开源框架Tensorflow对象检测API构建一个玩具检测器

TensorFlow对象检测API是一个建立在TensorFlow之上的开源框架，可以轻松构建，训练和部署对象检测模型。 到目前为止，API的性能给我留下了深刻...

3998

Supervised learning 原本我们是教会机器我们的规则，由机器执行规则进行分类，识别。 但规则总有漏洞，我们总能举出规则的反例。 我们不能为每种反...

2387

5318

### Github 项目推荐 | ANSI C 的简单神经网络库

Genann是一个经过精心测试的库，用于在 C 中训练和使用前馈人工神经网络（ANN）。它的主要特点是简单、快速、可靠和可魔改（hackable），它只需要提供...

841