在机器学习算法中,对于很多监督学习模型,需要对原始的模型构建损失函数ll,接下来便是通过优化算法对损失函数ll进行优化,以便寻找到最优的参数θ\theta 。在求解机器学习参数θ\theta 的优化算法中,使用较多的是基于梯度下降的优化算法(Gradient Descent, GD)。
梯度下降法有很多优点,其中,在梯度下降法的求解过程中,只需求解损失函数的一阶导数,计算的代价比较小,这使得梯度下降法能在很多大规模数据集上得到应用。梯度下降法的含义是通过当前点的梯度方向寻找到新的迭代点。
在具体使用梯度下降法的过程中,主要有以下几种不同的变种,即:batch、mini-batch、SGD和online。其主要区别是不同的变形在训练数据的选择上。
对于互联网上的应用来说,数据的获取变得实时,例如推荐中,系统希望能够根据用户的实时的信息对模型进行调整,这样就产生了在线学习,在线学习(Online Learning)算法就是充分利用实时数据的一个训练算法。
在线梯度下降法(Online gradient descent)对于所有训练数据只用一次,然后丢弃。每次根据实时的数据计算梯度,进而调整模型中的参数。