前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >简单易学的机器学习算法——谱聚类(Spectal Clustering)

简单易学的机器学习算法——谱聚类(Spectal Clustering)

作者头像
felixzhao
发布2018-03-20 11:01:49
2.4K0
发布2018-03-20 11:01:49
举报
文章被收录于专栏:null的专栏null的专栏

一、复杂网络中的一些基本概念

1、复杂网络的表示

2、网络簇结构

    网络簇结构(network cluster structure)也称为网络社团结构(network community structure),是复杂网络中最普遍和最重要的拓扑属性之一。网络簇是整个网络中的稠密连接分支,具有同簇内部节点之间相互连接密集,不同簇的节点之间相互连接稀疏的特征。

3、复杂网络的分类

    复杂网络主要分为:随机网络,小世界网络和无标度网络。

二、谱方法介绍

1、谱方法的思想

    在复杂网络的网络簇结构存在着同簇节点之间连接密集,不同簇节点之间连接稀疏的特征,是否可以根据这样的特征对网络中的节点进行聚类,使得同类节点之间的连接密集,不同类别节点之间的连接稀疏?

    在谱聚类中定义了“截”函数的概念,当一个网络被划分成为两个子网络时,“截”即指子网间的连接密度。谱聚类的目的就是要找到一种合理的分割,使得分割后形成若干子图,连接不同的子图的边的权重尽可能低,即“截”最小,同子图内的边的权重尽可能高。

2、“截”函数的具体表现形式   

3、基本“截”函数的弊端

    对于上述的“截”函数,最终会导致不好的分割,如二分类问题:

4、其他的“截”函数的表现形式   

三、Laplacian矩阵

1、Laplacian矩阵的定义

2、度矩阵的定义   

3、Laplacian矩阵的性质

4、不同的Laplacian矩阵

    除了上述的拉普拉斯矩阵,还有规范化的Laplacian矩阵形式:

四、Laplacian矩阵与谱聚类中的优化函数的关系

1、由Laplacian矩阵到“截”函数

    对于二个类别的聚类问题,优化的目标函数为:

定义向量

而已知:

2、新的目标函数   

3、转化到Laplacian矩阵的求解

五、从二类别聚类到多类别聚类

1、二类别聚类

    对于求解出来的特征向量

中的每一个分量

根据每个分量的值来判断对应的点所属的类别:

2、多类别聚类   

六、谱聚类的过程

1、基本的结构   

2、利用相似度矩阵的构造方法   

七、实验代码

1、自己实现的一个

代码语言:javascript
复制
#coding:UTF-8
'''
Created on 2015年5月12日

@author: zhaozhiyong
'''
from __future__ import division
import scipy.io as scio
from scipy import sparse
from scipy.sparse.linalg.eigen import arpack#这里只能这么做,不然始终找不到函数eigs
from numpy import *


def spectalCluster(data, sigma, num_clusters):
    print "将邻接矩阵转换成相似矩阵"
    #先完成sigma != 0
    print "Fixed-sigma谱聚类"
    data = sparse.csc_matrix.multiply(data, data)

    data = -data / (2 * sigma * sigma)
    
    S = sparse.csc_matrix.expm1(data) + sparse.csc_matrix.multiply(sparse.csc_matrix.sign(data), sparse.csc_matrix.sign(data))   
    
    #转换成Laplacian矩阵
    print "将相似矩阵转换成Laplacian矩阵"
    D = S.sum(1)#相似矩阵是对称矩阵
    D = sqrt(1 / D)
    n = len(D)
    D = D.T
    D = sparse.spdiags(D, 0, n, n)
    L = D * S * D
    
    #求特征值和特征向量
    print "求特征值和特征向量"
    vals, vecs = arpack.eigs(L, k=num_clusters,tol=0,which="LM")  
    
    # 利用k-Means
    print "利用K-Means对特征向量聚类"
    #对vecs做正规化
    sq_sum = sqrt(multiply(vecs,vecs).sum(1))
    m_1, m_2 = shape(vecs)
    for i in xrange(m_1):
        for j in xrange(m_2):
            vecs[i,j] = vecs[i,j]/sq_sum[i]
    
    myCentroids, clustAssing = kMeans(vecs, num_clusters)
    
    for i in xrange(shape(clustAssing)[0]):
        print clustAssing[i,0]
    

def randCent(dataSet, k):
    n = shape(dataSet)[1]
    centroids = mat(zeros((k,n)))#create centroid mat
    for j in range(n):#create random cluster centers, within bounds of each dimension
        minJ = min(dataSet[:,j]) 
        rangeJ = float(max(dataSet[:,j]) - minJ)
        centroids[:,j] = mat(minJ + rangeJ * random.rand(k,1))
    return centroids

def distEclud(vecA, vecB):
    return sqrt(sum(power(vecA - vecB, 2))) #la.norm(vecA-vecB)

def kMeans(dataSet, k):
    m = shape(dataSet)[0]
    clusterAssment = mat(zeros((m,2)))#create mat to assign data points to a centroid, also holds SE of each point
    centroids = randCent(dataSet, k)
    clusterChanged = True
    while clusterChanged:
        clusterChanged = False
        for i in range(m):#for each data point assign it to the closest centroid
            minDist = inf; minIndex = -1
            for j in range(k):
                distJI = distEclud(centroids[j,:],dataSet[i,:])
                if distJI < minDist:
                    minDist = distJI; minIndex = j
            if clusterAssment[i,0] != minIndex: clusterChanged = True
            clusterAssment[i,:] = minIndex,minDist**2
        #print centroids
        for cent in range(k):#recalculate centroids
            ptsInClust = dataSet[nonzero(clusterAssment[:,0].A==cent)[0]]#get all the point in this cluster
            centroids[cent,:] = mean(ptsInClust, axis=0) #assign centroid to mean 
    return centroids, clusterAssment


if __name__ == '__main__':
    # 导入数据集
    matf = 'E://data_sc//corel_50_NN_sym_distance.mat'
    dataDic = scio.loadmat(matf)
    data = dataDic['A']
    # 谱聚类的过程
    spectalCluster(data, 20, 18)

2、网上提供的一个Matlab代码

代码语言:javascript
复制
function [cluster_labels evd_time kmeans_time total_time] = sc(A, sigma, num_clusters)
%SC Spectral clustering using a sparse similarity matrix (t-nearest-neighbor).
%
%   Input  : A              : N-by-N sparse distance matrix, where
%                             N is the number of data
%            sigma          : sigma value used in computing similarity,
%                             if 0, apply self-tunning technique
%            num_clusters   : number of clusters
%
%   Output : cluster_labels : N-by-1 vector containing cluster labels
%            evd_time       : running time for eigendecomposition
%            kmeans_time    : running time for k-means
%            total_time     : total running time

%
% Convert the sparse distance matrix to a sparse similarity matrix,
% where S = exp^(-(A^2 / 2*sigma^2)).
% Note: This step can be ignored if A is sparse similarity matrix.
%
disp('Converting distance matrix to similarity matrix...');
tic;
n = size(A, 1);

if (sigma == 0) % Selftuning spectral clustering
  % Find the count of nonzero for each column
  disp('Selftuning spectral clustering...');
  col_count = sum(A~=0, 1)';
  col_sum = sum(A, 1)';
  col_mean = col_sum ./ col_count;
  [x y val] = find(A);
  A = sparse(x, y, -val.*val./col_mean(x)./col_mean(y)./2);
  clear col_count col_sum col_mean x y val;
else % Fixed-sigma spectral clustering
  disp('Fixed-sigma spectral clustering...');
  A = A.*A;
  A = -A/(2*sigma*sigma);
end

% Do exp function sequentially because of memory limitation
num = 2000;
num_iter = ceil(n/num);
S = sparse([]);
for i = 1:num_iter
  start_index = 1 + (i-1)*num;
  end_index = min(i*num, n);
  S1 = spfun(@exp, A(:,start_index:end_index)); % sparse exponential func
  S = [S S1];
  clear S1;
end
clear A;
toc;

%
% Do laplacian, L = D^(-1/2) * S * D^(-1/2)
%
disp('Doing Laplacian...');
D = sum(S, 2) + (1e-10);
D = sqrt(1./D); % D^(-1/2)
D = spdiags(D, 0, n, n);
L = D * S * D;
clear D S;
time1 = toc;

%
% Do eigendecomposition, if L =
%   D^(-1/2) * S * D(-1/2)    : set 'LM' (Largest Magnitude), or
%   I - D^(-1/2) * S * D(-1/2): set 'SM' (Smallest Magnitude).
%
disp('Performing eigendecomposition...');
OPTS.disp = 0;
[V, val] = eigs(L, num_clusters, 'LM', OPTS);
time2 = toc;

%
% Do k-means
%
disp('Performing kmeans...');
% Normalize each row to be of unit length
sq_sum = sqrt(sum(V.*V, 2)) + 1e-20;
U = V ./ repmat(sq_sum, 1, num_clusters);
clear sq_sum V;
cluster_labels = k_means(U, [], num_clusters);
total_time = toc;

%
% Calculate and show time statistics
%
evd_time = time2 - time1
kmeans_time = total_time - time2
total_time
disp('Finished!');
代码语言:javascript
复制
function cluster_labels = k_means(data, centers, num_clusters)
%K_MEANS Euclidean k-means clustering algorithm.
%
%   Input    : data           : N-by-D data matrix, where N is the number of data,
%                               D is the number of dimensions
%              centers        : K-by-D matrix, where K is num_clusters, or
%                               'random', random initialization, or
%                               [], empty matrix, orthogonal initialization
%              num_clusters   : Number of clusters
%
%   Output   : cluster_labels : N-by-1 vector of cluster assignment
%
%   Reference: Dimitrios Zeimpekis, Efstratios Gallopoulos, 2006.
%              http://scgroup.hpclab.ceid.upatras.gr/scgroup/Projects/TMG/

%
% Parameter setting
%
iter = 0;
qold = inf;
threshold = 0.001;

%
% Check if with initial centers
%
if strcmp(centers, 'random')
  disp('Random initialization...');
  centers = random_init(data, num_clusters);
elseif isempty(centers)
  disp('Orthogonal initialization...');
  centers = orth_init(data, num_clusters);
end

%
% Double type is required for sparse matrix multiply
%
data = double(data);
centers = double(centers);

%
% Calculate the distance (square) between data and centers
%
n = size(data, 1);
x = sum(data.*data, 2)';
X = x(ones(num_clusters, 1), :);
y = sum(centers.*centers, 2);
Y = y(:, ones(n, 1));
P = X + Y - 2*centers*data';

%
% Main program
%
while 1
  iter = iter + 1;

  % Find the closest cluster for each data point
  [val, ind] = min(P, [], 1);
  % Sum up data points within each cluster
  P = sparse(ind, 1:n, 1, num_clusters, n);
  centers = P*data;
  % Size of each cluster, for cluster whose size is 0 we keep it empty
  cluster_size = P*ones(n, 1);
  % For empty clusters, initialize again
  zero_cluster = find(cluster_size==0);
  if length(zero_cluster) > 0
    disp('Zero centroid. Initialize again...');
    centers(zero_cluster, :)= random_init(data, length(zero_cluster));
    cluster_size(zero_cluster) = 1;
  end
  % Update centers
  centers = spdiags(1./cluster_size, 0, num_clusters, num_clusters)*centers;

  % Update distance (square) to new centers
  y = sum(centers.*centers, 2);
  Y = y(:, ones(n, 1));
  P = X + Y - 2*centers*data';

  % Calculate objective function value
  qnew = sum(sum(sparse(ind, 1:n, 1, size(P, 1), size(P, 2)).*P));
  mesg = sprintf('Iteration %d:\n\tQold=%g\t\tQnew=%g', iter, full(qold), full(qnew));
  disp(mesg);

  % Check if objective function value is less than/equal to threshold
  if threshold >= abs((qnew-qold)/qold)
    mesg = sprintf('\nkmeans converged!');
    disp(mesg);
    break;
  end
  qold = qnew;
end

cluster_labels = ind';


%-----------------------------------------------------------------------------
function init_centers = random_init(data, num_clusters)
%RANDOM_INIT Initialize centroids choosing num_clusters rows of data at random
%
%   Input : data         : N-by-D data matrix, where N is the number of data,
%                          D is the number of dimensions
%           num_clusters : Number of clusters
%
%   Output: init_centers : K-by-D matrix, where K is num_clusters
rand('twister', sum(100*clock));
init_centers = data(ceil(size(data, 1)*rand(1, num_clusters)), :);

function init_centers = orth_init(data, num_clusters)
%ORTH_INIT Initialize orthogonal centers for k-means clustering algorithm.
%
%   Input : data         : N-by-D data matrix, where N is the number of data,
%                          D is the number of dimensions
%           num_clusters : Number of clusters
%
%   Output: init_centers : K-by-D matrix, where K is num_clusters

%
% Find the num_clusters centers which are orthogonal to each other
%
Uniq = unique(data, 'rows'); % Avoid duplicate centers
num = size(Uniq, 1);
first = ceil(rand(1)*num); % Randomly select the first center
init_centers = zeros(num_clusters, size(data, 2)); % Storage for centers
init_centers(1, :) = Uniq(first, :);
Uniq(first, :) = [];
c = zeros(num-1, 1); % Accumalated orthogonal values to existing centers for non-centers
% Find the rest num_clusters-1 centers
for j = 2:num_clusters
  c = c + abs(Uniq*init_centers(j-1, :)');
  [minimum, i] = min(c); % Select the most orthogonal one as next center
  init_centers(j, :) = Uniq(i, :);
  Uniq(i, :) = [];
  c(i) = [];
end
clear c Uniq;

个人的一点认识:谱聚类的过程相当于先进行一个非线性的降维,然后在这样的低维空间中再利用聚类的方法进行聚类。

欢迎大家一起讨论,如有问题欢迎留言,欢迎大家转载。

参考

1、从拉普拉斯矩阵说到谱聚类(http://blog.csdn.net/v_july_v/article/details/40738211)

2、谱聚类(spectral clustering)(http://www.cnblogs.com/FengYan/archive/2012/06/21/2553999.html)

3、谱聚类算法(Spectral Clustering)(http://www.cnblogs.com/sparkwen/p/3155850.html)

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 一、复杂网络中的一些基本概念
    • 1、复杂网络的表示
      • 2、网络簇结构
        • 3、复杂网络的分类
        • 二、谱方法介绍
          • 1、谱方法的思想
            • 2、“截”函数的具体表现形式   
              • 3、基本“截”函数的弊端
                • 4、其他的“截”函数的表现形式   
                • 三、Laplacian矩阵
                  • 1、Laplacian矩阵的定义
                    • 2、度矩阵的定义   
                      • 3、Laplacian矩阵的性质
                        • 4、不同的Laplacian矩阵
                        • 四、Laplacian矩阵与谱聚类中的优化函数的关系
                          • 1、由Laplacian矩阵到“截”函数
                            • 2、新的目标函数   
                              • 3、转化到Laplacian矩阵的求解
                              • 五、从二类别聚类到多类别聚类
                                • 1、二类别聚类
                                  • 2、多类别聚类   
                                  • 六、谱聚类的过程
                                    • 1、基本的结构   
                                      • 2、利用相似度矩阵的构造方法   
                                      • 七、实验代码
                                        • 1、自己实现的一个
                                          • 2、网上提供的一个Matlab代码
                                          领券
                                          问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档