前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >简单易学的机器学习算法——因子分解机(Factorization Machine)

简单易学的机器学习算法——因子分解机(Factorization Machine)

作者头像
felixzhao
发布2018-03-20 11:47:45
6.4K0
发布2018-03-20 11:47:45
举报
文章被收录于专栏:null的专栏

一、因子分解机FM的模型

       因子分解机(Factorization Machine, FM)是由Steffen Rendle提出的一种基于矩阵分解的机器学习算法。

1、因子分解机FM的优势

       对于因子分解机FM来说,最大的特点是对于稀疏的数据具有很好的学习能力。现实中稀疏的数据很多,例如作者所举的推荐系统的例子便是一个很直观的具有稀疏特点的例子。

2、因子分解机FM的模型       

二、因子分解机FM算法

    因子分解机FM算法可以处理如下三类问题:

  1. 回归问题(Regression)
  2. 二分类问题(Binary Classification)
  3. 排序(Ranking)

在这里主要介绍回归问题和二分类问题。

三、因子分解机FM算法的求解过程

1、交叉项系数 

2、模型的求解

这里要求出

主要采用了如公式

求出交叉项。具体过程如下:

3、基于随机梯度的方式求解

对于回归问题:

对于二分类问题:

四、实验(求解二分类问题)

1、实验的代码:

代码语言:javascript
复制
#coding:UTF-8

from __future__ import division
from math import exp
from numpy import *
from random import normalvariate#正态分布
from datetime import datetime

trainData = 'E://data//diabetes_train.txt'
testData = 'E://data//diabetes_test.txt'
featureNum = 8

def loadDataSet(data):
    dataMat = []
    labelMat = []
    
    fr = open(data)#打开文件
    
    for line in fr.readlines():
        currLine = line.strip().split()
        #lineArr = [1.0]
        lineArr = []
        
        for i in xrange(featureNum):
            lineArr.append(float(currLine[i + 1]))
        dataMat.append(lineArr)
        
        labelMat.append(float(currLine[0]) * 2 - 1)
    return dataMat, labelMat

def sigmoid(inx):
    return 1.0 / (1 + exp(-inx))

def stocGradAscent(dataMatrix, classLabels, k, iter):
    #dataMatrix用的是mat, classLabels是列表
    m, n = shape(dataMatrix)
    alpha = 0.01
    #初始化参数
    w = zeros((n, 1))#其中n是特征的个数
    w_0 = 0.
    v = normalvariate(0, 0.2) * ones((n, k))
    
    for it in xrange(iter):
        print it
        for x in xrange(m):#随机优化,对每一个样本而言的
            inter_1 = dataMatrix[x] * v
            inter_2 = multiply(dataMatrix[x], dataMatrix[x]) * multiply(v, v)#multiply对应元素相乘
            #完成交叉项
            interaction = sum(multiply(inter_1, inter_1) - inter_2) / 2.
            
            p = w_0 + dataMatrix[x] * w + interaction#计算预测的输出
        
            loss = sigmoid(classLabels[x] * p[0, 0]) - 1
            print loss
        
            w_0 = w_0 - alpha * loss * classLabels[x]
            
            for i in xrange(n):
                if dataMatrix[x, i] != 0:
                    w[i, 0] = w[i, 0] - alpha * loss * classLabels[x] * dataMatrix[x, i]
                    for j in xrange(k):
                        v[i, j] = v[i, j] - alpha * loss * classLabels[x] * (dataMatrix[x, i] * inter_1[0, j] - v[i, j] * dataMatrix[x, i] * dataMatrix[x, i])
        
    
    return w_0, w, v

def getAccuracy(dataMatrix, classLabels, w_0, w, v):
    m, n = shape(dataMatrix)
    allItem = 0
    error = 0
    result = []
    for x in xrange(m):
        allItem += 1
        inter_1 = dataMatrix[x] * v
        inter_2 = multiply(dataMatrix[x], dataMatrix[x]) * multiply(v, v)#multiply对应元素相乘
        #完成交叉项
        interaction = sum(multiply(inter_1, inter_1) - inter_2) / 2.
        p = w_0 + dataMatrix[x] * w + interaction#计算预测的输出
        
        pre = sigmoid(p[0, 0])
        
        result.append(pre)
        
        if pre < 0.5 and classLabels[x] == 1.0:
            error += 1
        elif pre >= 0.5 and classLabels[x] == -1.0:
            error += 1
        else:
            continue
        
    
    print result
    
    return float(error) / allItem
        
   
if __name__ == '__main__':
    dataTrain, labelTrain = loadDataSet(trainData)
    dataTest, labelTest = loadDataSet(testData)
    date_startTrain = datetime.now()
    print "开始训练"
    w_0, w, v = stocGradAscent(mat(dataTrain), labelTrain, 20, 200)
    print "训练准确性为:%f" % (1 - getAccuracy(mat(dataTrain), labelTrain, w_0, w, v))
    date_endTrain = datetime.now()
    print "训练时间为:%s" % (date_endTrain - date_startTrain)
    print "开始测试"
    print "测试准确性为:%f" % (1 - getAccuracy(mat(dataTest), labelTest, w_0, w, v))  

2、实验结果:

五、几点疑问

    在传统的非稀疏数据集上,有时效果并不是很好。在实验中,我有一点处理,即在求解Sigmoid函数的过程中,在有的数据集上使用了带阈值的求法:

代码语言:javascript
复制
def sigmoid(inx):
    #return 1.0 / (1 + exp(-inx))
    return 1. / (1. + exp(-max(min(inx, 15.), -15.))) 

欢迎更多的朋友一起讨论这个算法。

参考文章

1、Rendle, Factorization Machines.

2、Factorization Machines with libFM

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 一、因子分解机FM的模型
    • 1、因子分解机FM的优势
      • 2、因子分解机FM的模型       
      • 二、因子分解机FM算法
      • 三、因子分解机FM算法的求解过程
        • 1、交叉项系数 
          • 2、模型的求解
            • 3、基于随机梯度的方式求解
            • 四、实验(求解二分类问题)
              • 1、实验的代码:
                • 2、实验结果:
                • 五、几点疑问
                • 参考文章
                领券
                问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档