前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Hdfs的数据磁盘大小不均衡如何处理

Hdfs的数据磁盘大小不均衡如何处理

作者头像
Spark学习技巧
发布2018-03-20 14:27:43
2.2K0
发布2018-03-20 14:27:43
举报
文章被收录于专栏:Spark学习技巧

最近浪尖在纠结一个现在看起来很简单的问题。

现象描述

建集群的时候,datanode的节点数据磁盘总共是四块磁盘做矩阵成了一个7.2TB的sdb1(data1),两块通过矩阵做了一个3.6TB的sdc1(data2)磁盘,运维做的,历史原因。刚开始没有发现,然后集群过了一段时间,随着数据量的增加,发现集群有很多磁盘超过使用率90%告警,浪尖设置磁盘告警阈值是90%,超过阈值就会发短信或者微信告警,提醒我们磁盘将要满了进行预处理,但是通过hadoop的监控指标获取的磁盘利用率维持在55%+,这种情况下不应该发生告警的。磁盘的使用率在hadoop的hdfs的namnode的web ui也可以看到,如下:

这个时候,大家的怀疑会集中于hdfs的某些datanode节点数据存储过于集中,导致某些节点磁盘告警。但是大家都知道,hdfs允许datanode节点接入时datanode之间磁盘异构,数据存储hadoop会自动在datanode之间进行均衡。所以这个怀疑可以排除。

登录告警节点,发现确实data2磁盘使用率超过了90%,但是data1使用率维持在不足50%。

这时候问题就显而易见了,hadoop3.0之前hdfs数据存储只支持在datanode节点之间均衡,而不支持datanode内部磁盘间的数据存储均衡。

那么这个时候怎么办呢?

起初

浪尖想的是将data1那个矩阵,拆分成两块由两块磁盘组成的矩阵,然后重新滚动上下线Datanode(数据迁移或者通过副本变动让其进行均衡)。但是,后来很快否定了这种方法,原因是很简单。几百TB的数据,在集群中均衡,即使是滚动重启,那么多机器也要持续好久,然后在数据迁移或者均衡的时候,整个几群的带宽和磁盘都是会增加很大负担,导致集群的可用性降低。

接着

通过hadoop官网发现hadoop 3.0不仅支持datanode之间的数据均衡,也支持datanode内部管理的多磁盘的之间的数据均衡。

这个时候,可以考虑升级hadoop集群到hadoop3.0,但是思考再三浪尖觉得浪费时间,不划算,最终放弃这种方案。

最后

几经思考,终于想出了一个原本就很简单的方案,只需要重启datanode,就可以实现提高大磁盘利用率的方法。首先,要知道的是datanode管理磁盘,是根据我们dfs.data.dir参数指定的目录。那么,我们的思路就很简单了,给data1多个目录,不就可以增加其写入的概率,进而提升磁盘的使用率了么。配置方式如下:

<property>

<name>dfs.data.dir</name>

<value>/data1/dfs/dn,/data1/dfs/dn1,/data2/dfs/dn</value>

</property>

配置结束之后,重启datanode集群,过一定时间查看该目录的大小,然后发现有数据写入。

由此证明,想法是可行的。

此方法的缺点是,原有的数据不会进行均衡,增加目录的方式只是增加了新数据写入大磁盘的概率,但是这样就可以了,等着原有数据自动删除即可。

是不是很简单?

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2018-03-13,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 浪尖聊大数据 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
对象存储
对象存储(Cloud Object Storage,COS)是由腾讯云推出的无目录层次结构、无数据格式限制,可容纳海量数据且支持 HTTP/HTTPS 协议访问的分布式存储服务。腾讯云 COS 的存储桶空间无容量上限,无需分区管理,适用于 CDN 数据分发、数据万象处理或大数据计算与分析的数据湖等多种场景。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档