拥抱AI大趋势,ARM发布两款AI芯片架构

今天,ARM发布了两款针对移动终端的AI芯片架构,物体检测(Object Detection,简称OD)处理器和机器学习(Machine Learning,简称ML)处理器。

以往,ARM都是架构准备好了,才发公告。这次一反常态,没货却先发公告:OD处理器,计划在第一季度才能提供给合作伙伴;ML处理器得等到年中。

这也看出了ARM很焦急。

毕竟在过去的几个月中,尤其是在移动端圈子里,机器学习在半导体行业中很热。

好几家提供芯片架构的公司都宣布了提供消费者解决方案,连华为都开始自主研发架构了。那么多玩家入场,ARM却没啥动作。

直到现在,ARM才把重点放在了Armv8.2的CPU ISA扩展上,该扩展借助半精度浮点和整数点产品来简化和加速神经网络的专用指令。

除了CPU的改进之外,还看到了G72中机器学习的GPU改进。虽然这两项改进都有所帮助,但想要最大性能和效率,这些改进还不够。

在测试Kirin 970的NPU和Qualcomm的DSP时,可以看出,专用架构上运行推理的效率,比在CPU上运行的效率高出一个数量级以上。

正如ARM官方解释的那样,Armv8.2和GPU的改进只是建立机器学习解决方案的第一步,还必须研究对专用解决方案的需求。

ARM也从合作的小伙伴那里感受到了行业的压力,才熬出来ML处理器。

下面简单介绍一下这次发布的两个新的架构:机器学习ML处理器以及OD处理器。

ML处理器,是专门为加速神经网络模型推理所设计的。这种架构比传统的CPU和GPU架构有明显的优势。

在执行机器学习任务时,这款ML处理器可为数据优化内存管理。

这款处理器具有数据可高度重复使用的特点,能最大限度地减少数据的输入和输出,从而实现高性能和高效率。

ML处理器,理论上可在1.5W功率下,有超过4.6TOPs(8位整数)的理论吞吐量,最高可达3TOPs / W。

虽然TOPs值并不能完全体现处理器的性能,不过它对于行业标准化仍然有用。

作为一个完全独立的独立IP(电路功能)模块,ML处理器具有自己的ACE-Lite接口,可集成到SoC中,也可以集成到DynamiQ中。

此外,ARM没有透露ML处理器更多的架构信息。

OD处理器,是针对物体检测的任务进行了优化。尽管ML处理器也能完成相同的任务,但OD处理器可以更快。给单项任务提供专用架构,才能够获得最大效率。

ARM也考虑到了可能会出现OD和ML处理器集成在一起用的情况:OD处理器负责把图像中的目标处理区分割出来,然后把它们传递给ML处理器,进行更细颗粒度的处理。

ARM还提供大量软件,帮助开发人员将他们的神经网络模型应用到不同的NN框架中。从今天开始,这些软件大家可以在ARM开发者网站找到,同时也在Github上提供。

考虑到SoC开发的周期,基于新架构的芯片大概得在2019年年中或年末才能发布。ARM这次,可以说半导体及架构供应商中响应AI趋势比较慢的企业了。

最后,附编译来源:

https://www.anandtech.com/show/12427/arm-announces-trillium-machine-learning-ip

本文分享自微信公众号 - 量子位(QbitAI)

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2018-02-14

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏AI科技评论

动态 | 继LFW之后,腾讯优图又在难度更大的人脸识别库MegaFace中获得全球第一

AI科技评论按:近日,腾讯优图实验室在国际知名人脸识别数据库MegaFace中,以83.290%的成绩在100万级别人脸识别测试(Challenge1/Face...

38940
来自专栏AI科技评论

深度神经网络发展历程全回顾:如何加速DNN运算?

深度神经网络(DNN)目前是许多现代AI应用的基础。自从DNN在语音识别和图像识别任务中展现出突破性的成果,使用DNN的应用数量呈爆炸式增加。这些DNN方法被大...

52160
来自专栏AI科技评论

业界 | 腾讯AI Lab主任张潼:我们如何在人工智能领域布局?

AI科技评论按:4月9日,CITE 2017第五届深圳国际电子信息博览会盛大开幕。腾讯AI实验室主任张潼亮相峰会,并分享了三项内容:如何构建AI生态、AI时代的...

37950
来自专栏AI科技评论

深度 | 继美国之后,加拿大如何成为下一个人工智能金矿?

位于加拿大多伦多的Mars Discovery District是世界上最大的创新中心之一。但多年以来,由于美国硅谷的吸引,流失了大量人工智能领域的科学家和初创...

39350
来自专栏AI科技评论

业界 | 黄仁勋亲自撰文怼上 TPU:P40速度比你快 2 倍,带宽是你的 10 倍

AI科技评论按:前不久谷歌发布了关于TPU细节的论文,称“TPU 处理速度比当前 GPU 和 CPU 要快 15 到 30 倍”。当时就有人对此种“比较”表示质...

38460
来自专栏AI科技评论

学界| 用20000篇论文告诉你:机器学习在过去五年中发生了什么

AI科技评论按:arXiv.org 是一个专门收集物理学、数学、计算机科学与生物学论文预印本的网站。数据显示,截至 2014 年底的时候,arXiv 已经达到了...

33450
来自专栏AI科技评论

发现|能自主学习的人工神经突触出现 离人造“大脑”又近一步

AI科技评论按:在人工智能的研究中有一个流派,倾向于认为对大脑的恰当模拟会是制造出人工智能的关键,但事实上,直到今天我们对人脑的工作原理的了解仍然十分粗浅,更谈...

35870
来自专栏AI科技评论

深度 | 图普科技工程师:Mask R-CNN的理论创新会带来怎样的可能性?

melmcgowan 上周,AI 科技评论报道了 Facebook 实验室出炉的新论文《Mask R-CNN》,第一作者何恺明带领团队提出了一种名为「Mask ...

30450
来自专栏AI科技评论

全文|旷视科技孙剑:如何在大公司和创业公司做好计算机视觉的研究?

孙剑,博士,旷视科技(Face++)首席科学家、研究负责人。2003年毕业于西安交通大学人工智能与机器人研究所,毕业后加入微软亚洲研究院(Microsoft R...

59280
来自专栏机器学习AI算法工程

李航博士:浅谈我对机器学习的理解

李航博士,华为技术有限公司 诺亚方舟实验室 首席科学家 ? 算算时间,从开始到现在,做机器学习算法也将近八个月了。虽然还没有达到融会贯通的地步,但至少在熟悉了算...

52190

扫码关注云+社区

领取腾讯云代金券

年度创作总结 领取年终奖励