北大团队研发“车脸”识别系统,不看车牌看外观特征实现精确识别

【新智元导读】北京大学信息科学技术学院田永鸿等三名研究人员研发了根据汽车外观特征,而非扫描车牌号来精确识别摄像头拍摄的车辆的新技术。研究人员称该项技术也能用于人脸识别和行人检测,能为侦破盗窃车辆等案件提供帮助。

论文:https://arxiv.org/pdf/1708.02386.pdf

据《参考消息》8月30日引西媒报道,北京大学信息科学技术学院田永鸿等三名研究人员研发了根据汽车外观特征精确识别摄像头拍摄的车辆的新技术。该系统不再依靠扫描车牌号,而是基于对车辆外观特征的记录和分析,如轮廓线条、碰撞损伤或漆面刮痕等,依据这些特征数据搜索出机动车的型号和注册信息。

研究人员将这一多任务学习框架命名为“Repression Network (RepNet)”,识别车辆依据的指标分为两类,一类是车辆外观的“一般细节”,如颜色、品牌、型号等;另一类是车辆的外观缺陷和损伤。

报道称,在当前阶段,还无法确定Repression Network系统将于何时投入应用,因为其应用可能会被认为侵犯了隐私权。但可以确定的是,如果利用该系统对视频监控系统记录的车辆影像进行识别,一定能为侦破盗窃车辆等案件提供帮助。

研究人员在论文中描述了根据汽车外观特征精确识别摄像头拍摄的车辆影像的新技术。他们表示,这种系统也能用于识别人脸特征。

研究人员称,公共安全系统监控摄像头的大规模使用,创造了一个庞大的图像和视频数据库,为车辆识别和搜索提供了重要的技术支持。虽然车牌是汽车的一个重要身份特征,但许多监控摄像头并非是为扫描车牌设计的,此外车牌识别系统在识别混淆字符时的表现非常糟糕,比如区分 8 和 B,O、D 或 0,因此他们提出这种以车辆外观特征数据为依据的精确识别系统。

论文:Learning a Repression Network for Precise Vehicle Search

作者:Qiantong Xu, Ke Yan, Yonghong Tian

摘要

在公共安全中监控摄像头使用的日益增多凸显了大型图像数据库对于车辆搜索(vehicle search)的重要性。精确车辆搜索(precise vehicle search)的目的是根据给定的需查询的车辆图片,搜索出所有实例。这是一项具有挑战性的任务,因为不同的汽车外形都非常相似。为了解决这个问题,我们提出一个新的多任务学习框架,名为 Repression Network (RepNet),用以同时从粗粒度和细粒度级别学习每张汽车图像的辨别特征。此外,从属性分类方法的高准确率得到启发,我们提出一种桶搜索(bucket search)方法,在减少检索时间的同时仍然保持竞争力。我们对经修改的VehcileID [1]数据集进行了广泛的实验,实验结果表明,我们的 RepNet 实现了 state-of-the-art 的性能,并且 bucket search 的方法将检索时间缩短了约24倍。

图1:具有PRL的RepNet中不同层的特征的显著性图(saliency map)。在显著性图中,亮度越高的区域表示原始图像中该区域的信息越多,嵌入到给定的特征向量中。上图第1列是查询图像(query image),第2列至第5列分别显示4个特征向量的显著性图:Fbase,Fmodel,Fcolor和FSLS-3。

图2:RepNet将三个一组的图像作为输入,并通过三个网络(包括卷积组,FC层和具有共享权重的Repression层(REP))进行馈送。输出特征的名称和大小列在每一层上方和下方。 Repression层采用两个特征向量FSLS-1和FACS作为输入。只有每个组中的 anchor image 被用于属性分类,即只有它的网络具有FC层和FACS之后的损失函数。

图3:具有PRL的RepNet中不同层的特征的显著性图和具有相同结构但有repression层的网络。第一列是query image,右边的两组4列分别是从两个网络分别学习四个特征向量(Fbase,Fmodel,Fcolor和FSLS-3)的显著性图。

实验结果

图4:不同模型的精度曲线。LS和BS是线性搜索(linear search)和桶搜索(bucket search)的缩写。

结论

在这篇论文中,我们提出了一个多任务学习框架,用于有效地生成属性分类和相似性学习的细粒度特征表示。Repression层被设计用于将从特征分类学习的信息嵌入到表示每辆车的特定细节特征中,并且还用于平衡两个FC层流的权重比例。通过向VehicleID数据集添加一个新属性,我们用修订后的数据集进行了广泛的实验,证明了我们的框架和repression层的有效性——linear search具有更高的图像检索精度,以及bucket search使检索时间更少。这些优点值得进一步调查RepNet学习细粒度特征表示,例如引入哈希函数来生成二进制特征或将卷积组分成两组。此外,我们的框架还可以推广到更广泛的应用,例如人脸识别和行人检索。

原文发布于微信公众号 - 新智元(AI_era)

原文发表时间:2017-08-31

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏人工智能头条

高铁新建人脸识别系统,如何做到整容也可以识别逃犯?

7526
来自专栏新智元

【CVPR 2018】照片闭眼也无妨,Facebook黑科技完美补全大眼睛

1443
来自专栏深度学习与数据挖掘实战

采用深度学习算法为Spotify做基于内容的音乐推荐

本文转载自:CSDN优秀博客(文/彭根禄),原文链接:http://benanne.github.io/2014/08/05/spotify-cnns.htm...

1092
来自专栏机器学习算法与Python学习

数据科学家必用的25个深度学习的开放数据集!

原文:https://www.analyticsvidhya.com/blog/2018/03/comprehensive-collection-deep-le...

55114
来自专栏企鹅号快讯

Anti-Spoofing之人脸活体检测

每周精选 Algorithm System Anti-Spoofing 之人脸活体检测 在小编之前的文章系列中曾介绍过的对抗样本攻击,是目前Deep Learn...

2.4K6
来自专栏新智元

过去5年最受欢迎机器学习论文+代码速查

【新智元导读】Papers with Code网站将ArXiv上的最新机器学习论文与GitHub上的代码联系起来。这个项目索引了大约5万篇论文和1万个GitHu...

1460
来自专栏AI研习社

IJCAI 2018 广告算法大赛落下帷幕,Top 3 方案出炉

雷锋网 AI 研习社消息,IJCAI-18 阿里妈妈搜索广告转化预测比赛近日落下帷幕,本次比赛为阿里妈妈与 IJCAI2018、天池平台联合举办,总奖池 370...

1383
来自专栏工科狗和生物喵

【毕设进行时-工业大数据,数据挖掘】第一天收获

【个人看法】 支持向量机的核心与决策树类似。但是还是有不同之处,现在多学习下支持向量机,后面用自己的算法也行。或者给出多个版本的话,可以作为几个方案去解释!

1362
来自专栏企鹅号快讯

不正之风!机器学习论文里都有哪四大投机取巧的写作手法?

AI 科技评论按:由于深度神经网络的成功,机器学习的整个领域也愈发热门、愈发茁壮。机器学习的繁荣以及 arXiv 助推下的知识和技巧快速更新当然是好事,不过这也...

2525
来自专栏数据派THU

【独家】考察数据科学家和分析师的41个统计学问题

作者:Dishashree Gupta 翻译:闵黎 卢苗苗 校对:丁楠雅 本文长度为6500字,建议阅读20分钟 本文是Analytics Vidhya所举...

23110

扫码关注云+社区

领取腾讯云代金券