李开复:2018中国最大AI红利?是政策

李根 发自 凹非寺 量子位 报道 | 公众号 QbitAI

编者按:旧岁已逝,新年已来。2017年一年,中国AI的发展速度有目共睹,从顶会竞技,到创业融资,再到巨头布局,乃至大国博弈,AI有关的一切都在加速。那2018又会在此基础上塑造怎样的格局呢?哪些事件成为了AI发展的关键变量,中国AI又面临什么样的红利?

创新工场董事长、创新工场AI工程院院长李开复博士,就此话题接受了量子位专访,谈到了他对2017年AI宏观发展的看法,以及对后续AI竞争格局的判断。

我们在不改变原意的基础上,对专访进行了第一人称改写。

创新工场董事长、创新工场AI工程院院长李开复

最大变量

如果你问我2017年关于AI印象最深的一件事,我会毫不犹豫回答你:一定是7月国务院印发的《新一代人工智能发展规划》,这不仅展示出了国家对于AI发展的重视,影响也将是全球性、历史性的。

在科技发展和政策规范的相互作用之间,最好的政策能够推动科技进步,不增加更多的限制,关于AI的发展规划,正在延续这样的传统。

我们之前在移动支付、互联网金融等科技发展中,都有过类似的经历,所以我认为现在AI发展规划,能够让中国延续类似的成功。

这样的观点并非我个人之见,最近全球著名咨询智库欧亚集团发布了一份中国AI产业的最新白皮书,创新工场受邀提供了部分资料,其中欧亚和我们就中国政策执行落地方面有一致结论:由于中国政府在实现成果方面拥有良好的记录,这些政策规划应被认真对待。

举例来说,中国在2010年提出将成为高速铁路领域的世界领先者。现今,中国占有世界高速铁路的60%。2014年,中国政府提出“大众创业和万众创新”计划。几年内,中国的创业孵化器数量从2014年的1400个提升到8000个

所以没有理由不相信,拥有强大政策执行力和落地能力的中国,将会为全球AI的发展注入不可估量的“变量”

欧亚报告中国AI政策图

大国竞争分水岭

既然我认为AI政策是2017最大的变量,不妨举了最近的具体例子。

12月18日,北京刊发了无人车路测的细则,相比美国原本就宽松的交通政策,中国在允许无人车上路方面算不上早,而且从细则来讲,限定时间区域、明码标识“自动驾驶”等都看起来更严格。

但对于中国来说,无人车是全新的新事物,一切刚开始,政策从紧到松也情有可原,因为一开始谨慎一点,随着技术提升,再不断改善政策,总会把事情推动得更好,过去也能看到不少这样政策推动科技发展的例子。

而且中国与美国不同,我们不能只看到加州吸引了全世界的无人车公司前去路测,也要看到有些州在相关政策推进上并不容易。

但中国只要首都性、中央性的政策出台,还会带动地方性法规出台,而且地方为了落地,可能不光会给相关企业政策上的扶持,也会有财务上的补足,这会促进整个生态的发展。

另外,不能忽视的是美国选举和工会传统会对无人车等AI发展造成的阻力。

前几天,Jeff Dean(量子位注:Google大脑负责人)还转发评论了我谈论中美AI不同的MIT演讲,他为目前美国的AI推进和人才政策感到担忧。他当然不是一个简单粗暴的美国民族主义者,一直倡导的科技进步也是为全人类服务的,但对于目前人才和科技发展方面的政策,他开始越来越多出面发声。

美国正在发生什么呢?像无人货车一项,是自动驾驶方向上的重要的垂直应用,但由于货车司机担心失业,于是卡车司机工会请求交通部延迟自动化卡车测试,这会造成无人货车技术研发上的进展缓慢。

所以现在我们无人车路测细则出台,我不认为中国不是没有弯道超车的理由。

关于无人车的研发,美国在技术推进上肯定要比中国早和快,但无人车最终还是要落地到具体场景的,在美国跑得很顺畅,不一定就能适应中国的路况,所以现在北京允许上路路测,不仅会节省更多中国无人车公司的跨洋协作成本,也能更快在中国路况场景下把无人车开起来。

国情优势

中国在政策方面的优势还不止于此。还是围绕无人车,可能还有一些路测之外的侧面——无人驾驶引发的安全问题、失业问题,还有交通设施上的作为等等。

比如交通设施上的作为,中国就会主动做一些事情。现在有些地方在和阿里合作城市大脑,也有和滴滴、摩拜的合作,对现有基础设施进行一些修改,这都会利于无人车更快推进。

或许不久将来,中国就有一条专门的道路允许无人驾驶上路、允许无人驾驶和其他客用车一起行进,还有可能在道路上装载传感器,让定位感知不仅发生在汽车端,也在路网端,这样也会推进无人驾驶到来。

实际这些措施也不是不会在美国发生,但在中国,大手笔的改革的发生概率总要更高一些。也有一些新城市建设或城市翻新,过程中也会有很多机会,可以把无人车融入其中。

再比如保险理赔,中国也可能比美国更利于无人车发展。假设在美国,一个年轻画家要是被Google的无人车撞伤了手,可能面临的将是天价官司,索赔天文数字也不是没有可能。但在中国或许就有伤害引发赔偿的上限规定,这在美国可能性几乎为零。

这样的不同是由于国情不同造成的,也不会短时间发生变化,所以对于中国来说,更理性快速解决问题,也就会更加利于整个科技新事物的推进。

至于AI带来的失业问题,这将是全球性的,不分国界。但中国也有优势,至少中国现在不惧怕讨论,而美国很多大公司都不敢公开谈论,担心引发民众反对。所以这不是很好地解决问题的方式,历史趋势如此,阻碍是没用的,更多考虑的应该是如何疏导、解决问题。

我并非历史学家,但过往大的技术革命造成职业变革,人类都经验可循,而中国可能在集中人力物力应对大变革方面,做得还比其他国家更出色,我对此并不悲观。

建议

OK,已经足够宏观而细致地谈论了我认为2017的最重要“变量”。

那也可以在此基础上给AI创业者一点个人建议:

大趋势如此,大环境更好,对于整个AI创业者都是好消息,那对于创业者来说,可能最核心的就是利用拥有的资源和技术,实现快速迭代和滚动,最好还能够在垂直场景中做深做透。

我们还是以无人车举例,如果你现在做垂直行业应用,仍旧有一些机会。比如借助Apollo这样的基础平台,做货车、巴士,甚至矿车等应用,跟具体场景紧密结合,给出你的产品方案和解决方案,并在市场中获得验证。

巨头推出的平台Apollo,今年的确做得很成功,但也不意味着别人没有机会,毕竟安卓之外,iPhone肯定也有市场和前景,你看驭势科技做的就是具体场景的完整方案,累积得很快。

另一个建议是留意交叉领域出现的新机会。

可能年初的时候还不好说无人车领域会有哪些新机会,但现在总结一年,新的机会还在产生,来自一些结合性的机会。比如电动车+无人驾驶的结合,可能就会在耗电相关方面给芯片机会。

总而言之,对于AI初创公司而言,我认为最关键的还是快速切入行业,形成人才、行业的积累,让自己更快发展,形成技术、行业上的滚动。

本文分享自微信公众号 - 量子位(QbitAI)

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2018-01-02

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏AI科技评论

开发 | MIT Taco项目:自动生成张量计算的优化代码,深度学习加速效果提高100倍

AI科技评论消息:我们生活在大数据的时代,但在实际应用中,大多数数据是“稀疏的”。例如,如果用一个庞大的表格表示亚马逊所有客户与其所有产品的对应映射关系,购买某...

401110
来自专栏AI科技评论

依图科技斩获IARPA全球人脸识别挑战赛冠军,中国技术成为全球标杆

AI科技评论消息:2017年11月1日,全球人脸识别挑战赛(Face Recognition PrizeChallenge ,FRPC)冠军名单在全球生物识别学...

32450
来自专栏AI科技评论

干货 | 如何理解深度学习分布式训练中的large batch size与learning rate的关系?

问题详情: 在深度学习进行分布式训练时,常常采用同步数据并行的方式,也就是采用大的batch size进行训练,但large batch一般较于小的baseli...

95990
来自专栏AI科技评论

动态 | 百度发布 Deep Speech 3,不同应用场景下轻松部署高精度语音识别模型

AI 科技评论按:美国时间10月31日,百度研究院发出博文,宣布发布新一代深度语音识别系统 Deep Speech 3。继2014首秀的第一代Deep Spee...

52180
来自专栏jessetalks

全面理解 ASP.NET Core 依赖注入

DI在.NET Core里面被提到了一个非常重要的位置, 这篇文章主要再给大家普及一下关于依赖注入的概念,身边有工作六七年的同事还个东西搞不清楚。另外再介绍一下...

59380
来自专栏AI科技评论

现场 | AI Frontier大会开幕 最干货的AI应用不容错过

AI科技评论消息,美国时间11月3日,第二届人工智能前沿大会(AI Frontier)在硅谷 Santa Clara 会议中心隆重开幕。这是继今年年初第一届AI...

22230
来自专栏AI科技评论

开发 | 如何从零训练神经网络玩游戏?这里有一段详细的解读视频

AI科技评论消息,最近,Youtube 上的知名游戏博主 SethBling 训练了一个叫 MariFlow 的神经网络来玩 Mario Kart 游戏。在进行...

44770
来自专栏AI科技评论

独家 | 让城市不再与炸弹同眠:大数据​助力城市危险品管理

AI 科技评论按:距离 8·12 天津滨海新区爆炸事故已经过去了两周年。这起因危险品的不合理存放和管理导致的重大伤亡事故也让高校科研人员高度关注如何用大数据来防...

32570
来自专栏AI科技评论

深度 | 对话英特尔中研院宋继强:英特尔 AI 加持春哥最新 MV 的背后

AI科技评论按:如果没有2005年的爆红,这些数以万计的陌生人或许就不会站在雨里,为台上的偶像李宇春“打 call”,而李宇春也不会在走红12年后,为台下的这些...

36360
来自专栏AI科技评论

业界 | 腾讯 AI Lab 斩获 MSCOCO Captions 冠军,领衔图像描述生成技术

AI 科技评论按:图像描述生成技术是一个计算机视觉与 NLP 交叉研究领域的研究领域,在如今的浪潮下更显火热。今年8月,腾讯 AI Lab 凭借自主研发的强化学...

41460

扫码关注云+社区

领取腾讯云代金券

年度创作总结 领取年终奖励