AI炒股轻松赚大钱?Too naive

夏乙 允中 编译整理 量子位 出品 | 公众号 QbitAI

让AI代替人类炒股,多么美妙的目标。

机器学习技术能在不需要人类预先编写规则的情况下,让计算机从数据中寻找模式。从机器人到天气预报,再到语言翻译,甚至开车,这项技术驱动着多个领域的进步。

为什么不能用它来搞定金融市场呢?

这种想法,已经引发了投资公司之间的军备竞赛,各家本来就已经非常依赖数学的基金开始争抢他们所能找到的顶尖计算机科学家和统计学家。

这项技术一开始表现还不错。今年业绩最好的两家对冲基金——Quantitative Investment Management LLC和Teza Capital Management LLC今年分别上涨了68%和50%,他们都说能做出这么好的业绩,机器学习功不可没。

然而,在投资上持续全面押注机器学习的公司寥寥无几。

对哈里托诺夫(Michael Kharitonov)来说,基于机器学习建立对冲基金不是件易事:难度是想象中的三倍,耗时是预期的三倍。

“我们基本是屡战屡败。”他说。

哈里托诺夫是Voleon Group的联合创始人,这是首批全面拥抱机器学习的投资公司之一。从他们这些年的挣扎中,可以大致理解其他公司的选择。

将机器学习用在金融交易中,我们先要清楚:这项技术在其他领域取得的那些成就,在交易上可能并不适用。金融交易是一个更杂乱的环境,模式总是被掩盖着。

哈里托诺夫说,他们一开始就想用机器学习做交易预测,但是“就是不管用”。

哈里托诺夫现年54岁,他还有一位43岁的联合创始人麦考利夫(Jon McAuliffe)。他们分别是计算机和统计学博士,都曾在最古老、最成功的量化投资基金D.E. Shaw Group做研究员。

那个时候,今年时不时登一下首富宝座的贝佐斯还没有创立亚马逊,刚好是哈里托诺夫的上司。

哈里托诺夫和麦考利夫多年来一直坚信,他们学过的机器学习技术天生适用于投资,有着可靠的方法论指导。但他们年轻时,计算机还不够快,可用的数据集还不够大。

到2007年,新数据集和足够厉害的计算机出现了,于是哈里托诺夫和麦考利夫创立了Voleon,用机器学习做投资。公司的名字没什么特别含义,编了这么一个词只是因为域名刚好能注册。

在融资过程中,他们遇到了挑剔的机构投资者。

要知道,机器学习这项技术和量化交易的常用方法有一些不同,它不需要科学家提出假设、写出算法给计算机执行,而是由人类为自己算计提供大量数据,然后让它自己找出模式。

实际上,就是计算机自己写出算法,用来做预测,但问题在于,计算机不会告诉你它是怎么得出这个结果的。

市面上的那些量化基金能够很清晰地解释出自己的算法在做什么,但是Voleon的机器学习算法是怎么想的,只有计算机自己知道。

这种方法固有的神秘性,让Voleon根本无法向潜在投资者解释他们买卖股票的理由。计算机所找出的模式对人类来说太细微了,很难理解。

“很多人都完全不感兴趣,但后来我们终于找到了能理解机器学习潜力的人。”哈里托诺夫说。

2008年,全球市场深陷金融危机之中时,Voleon开始了真实交易。

接下来整整两年,这家公司都在亏钱。2009年市场回暖也无济于事。

Voleon的创始团队坚持按着原来的方向走下去,他们坚信自己在处理机器学习最难的问题之一,要想赚钱,需要先花时间打磨系统。

他们所面对的基本问题,是市场太混乱了。到目前为止,机器学习系统表现很好的领域都有一个共同特征:模式本质上是重复的,于是就更易于辨别,围棋、开车都是如此。

而金融市场有更多噪声,它持续受到新事件的影响,而这些新事件之间的关系,也总是在变化。

市场变幻莫测的本质也就意味着投资者刚刚找出昨天的关联,想要运用它来做投资,它就消失了。在机器学习的其他应用场景里,都没有这样的问题。比如说用机器学习来做语音识别,人类语音的基本性质,基本是不变的。

尽管Voleon的创立在某种意义上讲,是受到了机器学习在其他领域成功案例的激励,但是到了2011年底,Voleon创始人已经抛弃了从其他应用借来的大部分技术。取而代之的是创始人自己为不守规矩的市场定制的系统。

麦考利夫整洁的办公室里,书架上放着《大样本理论要素》、《BDA3》等书籍。哈里托诺夫的办公室里装满了他拆开的电路板,以及好多堆满纸的箱子。

他们面临的一个挑战是,需要使用每秒股票的价格变化,来运行15年的股市模拟。这涉及太字节的数据。Voleon需要在几个小时内模拟完毕,但他们耗时数天甚至数周。

那时候,整个公司有10到12个人。这个团队尝试购买更多的计算力,使用为电脑游戏打造的GPU。但仍然耗时太长。

麦考利夫在办公室里痛苦的度过了好几个月。最终,他攻克了这个问题。2012年7月,Voleon推出第二代平台。

哈里托诺夫说,蛮力的方法没用,标准技术也没用。

他们的新交易系统带来了更多的利润,以及更多投资者的兴趣。据一位投资者透露,在旗舰基金2011年出现小幅回升后,Voleon 2012年的业绩是34.9%,2013年是46.3%。

然而,两年之后,Voleon去年遭遇滑铁卢,亏损超过9%。这也引起了部分投资者的担心。

“没什么比回撤更引人深思”,哈里托诺夫说:“去年我们学到了很多”。

今年比去年好。截止今年10月,这家管理着18亿美元资金的公司,其旗舰基金上涨约4.5%。自成立以来,其年化收益率大约是10.5%。

业绩波动、策略复杂……并没有阻止Voleon的发展。这家基金正在扩大投资目标,投资标的不仅限于美国和欧洲的股市,还包括加州大学伯克利分校附近的一座楼。

在机器学习技术的帮助下,Voleon每天交易价值超过10亿美元的股票。在这个过程中,他们对买入或者卖出一只股票的原因,没有丝毫兴趣。

哈里托诺夫说,机器学习系统越是具有预测性,人们就越难理解它要做什么。有理论认为人类思维主要用于处理三个维度的情景,数十个乃至数百个维度的任务则是机器学习系统擅长的领域。这些维度之间的关系,往往是非线性的。

“这并不意味着我们不会考虑发生了什么”,麦考利夫说,Voleon的研究人员会设计“扰动”,来研究各种输入在预测系统中的权重,以及解决过拟合等问题。

Voleon的电脑不仅在财务信息中寻找关系,而且在非财务数据中寻找关系。其中包括卫星图像、航运舱单、信用卡收据、社交媒体情绪等等。这些目标数据,可以帮助寻找某个行业的健康状况或者商品供应的变化。

显然,没有人会透露自己使用了哪种数据,如何进行的评估。Voleon也是一样,谨慎的保护着自己的技术和策略隐私。

这个“神秘”的机制让投资者不安,哈里托诺夫理解这种感受,不过他坚信:电脑犯错的情况要比人类少得多。

“机器学习在财务预测领域的应用还在早期阶段”,他说:“一切才刚刚开始”。

原文发布于微信公众号 - 量子位(QbitAI)

原文发表时间:2017-12-12

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏AI研习社

AI安全大牛都来了!智能安全的话题引发学术界/产业界共同聚焦 | CCF-GAIR 2018

2018 全球人工智能与机器人峰会(CCF-GAIR)在深圳召开已进入第二天的议程,活动现场依旧火爆。本次峰会由中国计算机学会(CCF)主办,雷锋网、香港中文大...

10620
来自专栏SIGAI学习与实践平台

AI时代大点兵-国内外知名AI公司2018年最新盘点【完整版】

据腾讯研究院统计,截至2017年6月,全球人工智能初创企业共计2617家。美国占据1078家居首,中国以592家企业排名第二,其后分别是英国,以色列,加拿大等国...

31440
来自专栏大数据文摘

英《Psychological Science》发布最新研究成果:跟踪15000人,发现早产儿数学差工资低

29470
来自专栏量子位

下一个主要AI平台是什么?苹果说:手机

千平 发自 凹非寺 量子位 出品 | 公众号 QbitAI 下一个主要AI平台在哪里? 苹果公司的答案是:手机。 “我们已经构建的架构、我们放在手机手表里的神经...

35790
来自专栏灯塔大数据

深度|AI行业的真实进展或许远超想象

? 在AI领域,相比创业公司,大公司具有天然的先发优势。在技术方面,决定技术的三个要素——数据、算法模型、计算力,背后的潜台词对应的是数据量、人才、资金,大公...

59350
来自专栏DT数据侠

看摇滚女博士,如何玩转数据科学 | 数据科学50人·杜晓梦

如今,我们每个人都在谈论“数据科学”,哈佛商业评论杂志甚至将数据科学家定义为“21世纪最性感的职业”。在这个大数据时代,究竟什么是数据科学?数据科学领域的科学家...

10700
来自专栏数据猿

【案例】融360:智能金融系统建设最佳实践案例

大数据、云计算、人工智能等颠覆性技术的快速发展,为金融机构可持续地开展普惠金融业务奠定了技术前提,使得原本高度碎片化、用户数量庞大但个体资金量小、无利可图的“长...

54850
来自专栏数据猿

关于科技创新下的量化投资,这些大佬都讲了什么?

9月25日下午,由数据猿联合中国信通院和量子金服共同主办的活动——科技创新下的量化投资,顺利落幕。会议中我们邀请到了6位行业的精英为现场观众带来了精彩演讲,深刻...

29030
来自专栏机器之心

机器之心GMIS 2017圆满闭幕,全面解读前沿研究、产业落地及AI全球化

机器之心原创 机器之心编辑部 5 月 28 日,机器之心主办的第一届全球人工智能峰会(GMIS 2017)顺利闭幕。在为期两天的大会中,许多学界和业界的重量级嘉...

31050
来自专栏AI科技大本营的专栏

一周AI看点 | 斯坦福提出高速视频目标检测系统,Facebook开源人工智能游戏测试平台

本期一周AI看点包括:技术前沿,行业,观点,应用以及投融资等方面 技术前沿 完善强化学习安全性:UC Berkeley提出约束型策略优化新算法 强化学习作为深度...

39770

扫码关注云+社区

领取腾讯云代金券