【干货】深度学习三大硬件+四大学习库基准测试对比,指标全面呈现

【新智元导读】深度学习计算该买哪款GPU,选择哪个平台?这篇文章为你提供对比指南。

购买用于运行深度学习算法的硬件时,我们常常找不到任何有用的基准,唯一的选择是买一个GPU然后用它来测试。现在市面上性能最好的GPU几乎都来自英伟达,但其中也有很多选择:是买一个新出的TITAN X Pascal还是便宜些的TITAN X Maxwell,又或是GTX 1080?本文中我们对几个最常见的英伟达GPU以及最常用的一些深度学习算法进行了基准测试。软件方面,我们比较了最近发布的四个开源深度学习库:Tensorflow v0.10.0、Neon v1.6.0、Caffe rc3以及caffe的英伟达版本NVcaffe v0.15.10。

GPU基准测试:GeForce GTX 1080 vs Titan X(Maxwell) vs Titan X (Pascal)

我们比较了GeForce GTX 1080、Titan X Maxwell和Titan X Pascal三款GPU,使用的深度学习库是Neon、Tensorflow和Caffe,深度学习网络是AlexNet、GoogleNet、OverFeat和VGG-A。

所有基准测试都使用64位系统,每个结果是100次迭代计算的平均时间。

基于库的测试结果

训练基准测试

使用四种库(Tensorflow,NVcaffe,Caffe,Neon)进行一次前向迭代和反向迭代的总时间[ms](越少越好)。结果如下:

推论基准测试

使用四种库(Tensorflow,NVcaffe,Caffe,Neon)进行一次前向迭代的总时间[ms](越少越好)。结果如下:

基于神经网络的测试结果

训练基准测试

使用四种神经网络(VGG-A, OverFeat,AlexNet, GoogLeNet)进行一次前向迭代和反向迭代的总时间(越少越好)。结果如下:

推论基准测试

使用四种神经网络(VGG-A, OverFeat,AlexNet, GoogLeNet)进行一次前向迭代的总时间(越少越好)。结果如下:

配置

基准测试工具

在Neon上进行基准测试使用的是neon库中的脚本neon/tests/run_benchmarks.py,在Tensorflow上使用的是convnet-benchmarks和不加修改的脚本convnet-benchmarks/tensorflow/benchmark_alexnet.py, convnet-benchmarks/tensorflow/benchmark_googlnet.py, convnet-benchmarks/tensorflow/benchmark_overfeat.py 以及 convnet-benchmarks/tensorflow/benchmark_vgg.py。Caffe使用的也是convnet-benchmarks,但对脚本convnet-benchmarks/caffe/run_imagenet.sh作了修改以指向我们的caffe安装。

深度学习库基准测试:Caffe vs Neon vsNVcaffe vs Tensorflow

同样,所有基准测试都使用64位系统,每个结果是100次迭代计算的平均时间。

基于GPU的测试结果

训练基准测试

使用四种GPU(Titan X Pascal, Titan X Maxwell, GeForce GTX 1080)进行一次前向迭代和反向迭代的总时间(越少越好)。结果如下:

推论基准测试

使用四种GPU(Titan X Pascal, Titan X Maxwell, GeForce GTX 1080)进行一次前向迭代的总时间(越少越好)。结果如下:

基于神经网络的测试结果

训练基准测试

使用四种神经网络(VGG-A, OverFeat,AlexNet, GoogLeNet)进行一次前向迭代和反向迭代的总时间(越少越好)。结果如下:

推论基准测试

使用四种神经网络(VGG-A, OverFeat, AlexNet,GoogLeNet)进行一次前向迭代的总时间(越少越好)。结果如下:

配置

基准测试工具

在Neon上进行基准测试使用的是neon库中的脚本neon/tests/run_benchmarks.py,在Tensorflow上使用的是convnet-benchmarks和不加修改的脚本convnet-benchmarks/tensorflow/benchmark_alexnet.py, convnet-benchmarks/tensorflow/benchmark_googlnet.py, convnet-benchmarks/tensorflow/benchmark_overfeat.py 以及 convnet-benchmarks/tensorflow/benchmark_vgg.py。Caffe使用的也是convnet-benchmarks,但对脚本convnet-benchmarks/caffe/run_imagenet.sh作了修改以指向我们的caffe安装。

原文发布于微信公众号 - 新智元(AI_era)

原文发表时间:2016-10-14

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

从程序员的角度看神经网络的激活功能

这篇文章是系列文章的第二部分,讨论使用Java以简单易懂的方式编程神经网络的方法。

26370
来自专栏wOw的Android小站

[Tensorflow] Tensorflow卷积理解

CNN对于学习深度学习的人来说应该是比较耳熟的名词了.但很多人只是听过,但不知道是什么.

89120
来自专栏CVer

风格迁移三部曲(二)之固定风格任意内容的快速风格迁移

上篇介绍了风格迁移三部曲(一)之普通风格迁移,本文将继续介绍第二种风格迁移方式:固定风格任意内容的快速风格迁移。

18800
来自专栏用户2442861的专栏

Torch深度学习入门

lua和torch的安装官网都有,lua的语法基础知识网上有很多。请看本文前自行学习。本文简单介绍了torch做深度学习模型的简单用法,并给出了CIFAR-10...

13420
来自专栏一名叫大蕉的程序员

尝试克服一下小伙伴对神经网络的恐惧No.26

我是小蕉。 研表究明,这的网官的demo,代码确实的是己打自的。 这两天仔细研究了一下神经网络,简单的结构其实没想象中那么恐怖,只是我们自己吓自己,今天希望能把...

20660
来自专栏AI科技大本营的专栏

用AI给黑白照片上色,复现记忆中的旧时光

【导读】我们知道,深度学习几乎已经应用在每一个领域,但如果我们能够构建一个基于深度学习的模型,让它能够给老照片着色,重现我们童年的旧回忆,这该多么令人激动啊!那...

57530
来自专栏Small Code

【TensorFlow】TensorFlow 的多层感知器(MLP)

前面有几篇博文讲了使用 TensorFlow 实现线性回归和逻辑斯蒂回归,这次来说下多层感知器(Multi-Layer Perceptron)的 TensorF...

472110
来自专栏Python小屋

Python使用tensorflow中梯度下降算法求解变量最优值

TensorFlow是一个用于人工智能的开源神器,是一个采用数据流图(data flow graphs)用于数值计算的开源软件库。数据流图使用节点(nodes)...

36180
来自专栏Coding迪斯尼

依赖反向传播改进神经网络数据处理的精确度

13240
来自专栏吉浦迅科技

深度学习GeForce GTX 1080/Titan X(Maxwell)/ Titan X (Pascal)比较

【新智元导读】深度学习计算该买哪款GPU,选择哪个平台?这篇文章为你提供对比指南。 购买用于运行深度学习算法的硬件时,我们常常找不到任何有用的基准,唯一的选择是...

2.3K50

扫码关注云+社区

领取腾讯云代金券