前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >齐次方程到矩阵(番外篇)

齐次方程到矩阵(番外篇)

作者头像
Gxjun
发布2018-03-26 15:26:27
6070
发布2018-03-26 15:26:27
举报
文章被收录于专栏:mlml

     最近做题,老是遇到了一些公式比如An=An-1+An-2,然后给你一个巨大n的数据,要你求An的值,然后以前做起来,还是比较的顺手的,但是时间抹去了记得的记忆,说明没有学会,于是又花掉一些时间,来回顾以及学习快速矩阵算法。

  其实,每一次我们想到快速矩阵的时候,就可能会产生一个问题? 矩阵该怎么构造,在已经知道了公式的情况下。

不妨以一个我们所收悉的列子:(引自一位 http://www.cnblogs.com/frog112111/archive/2013/05/19/3087648.html )

 求Fibonacci数列第n项的方法是 构造常系数矩阵

(一)   Fibonacci数列f[n]=f[n-1]+f[n-2],f[1]=f[2]=1的第n项快速求法(不考虑高精度)

解法:

考虑1×2的矩阵|f[n-2],f[n-1]|。根据Fibonacci数列的递推关系,我们可以通过乘以一个2×2的矩阵A,得到矩阵:|f[n-1],f[n]|。

即:|f[n-2],f[n-1]|*A = 【f[n-1],f[n]】=【f[n-1],f[n-1]+f[n-2]】

很容易构造出这个2×2矩阵A,即: 0 1 1 1

所以,有【f[1],f[2]】×A=【f[2],f[3]】 又因为矩阵乘法满足结合律,故有: 【f[1],f[2]】×A ^(n-1) =【f[n],f[n+1]】 这个矩阵的第一个元素f[n]即为所求。

(二)   数列f[n]=f[n-1]+f[n-2]+1,f[1]=f[2]=1的第n项的快速求法(不考虑高精度)

解法: 仿照前例,考虑1×3的矩阵【f[n-2],f[n-1],1】,希望求得某3×3的矩阵A,使得此1×3的矩阵乘以A得到矩阵:【f[n-1],f[n],1】

即:【f[n-2],f[n-1],1】* A =【f[n-1],f[n],1】=【f[n-1],f[n-1]+f[n-2]+1,1】

容易构造出这个3×3的矩阵A,即: 0 1 0 1 1 0 0 1 1

故:【f[1],f[2],1】* A^(n-1) = 【f[n],f[n+1],1】

(三)数列f[n]=f[n-1]+f[n-2]+n+1,f[1]=f[2]=1的第n项的快速求法(不考虑高精度). 解法: 仿照前例,考虑1×4的矩阵【f[n-2],f[n-1],n,1】,希望求得某4×4的矩阵A,使得此1×4的矩阵乘以A得到矩阵:【f[n-1],f[n],n+1,1】 即:【f[n-2],f[n-1],n,1】* A  = 【f[n-1],f[n],n+1,1】=【f[n-1],f[n-1]+f[n-2]+n+1,n+1,1】 容易构造出这个4×4的矩阵A,即: 0 1 0 0 1 1 0 0 0 1 1 0 0 1 1 1

故:【f[1],f[2],3,1】* A^(n-1) = 【f[n],f[n+1],n+2,1】

(四)   数列f[n]=f[n-1]+f[n-2],f[1]=f[2]=1的前n项和s[n]=f[1]+f[2]+……+f[n]的快速求法(不考虑高精度).

解法:

仿照之前的思路,考虑1×3的矩阵【f[n-2],f[n-1],s[n-2]】,我们希望通过乘以一个3×3的矩阵A,得到1×3的矩阵:【f[n-1],f[n],s[n-1]】 即:【f[n-2],f[n-1],s[n-2]】 * A  = 【f[n-1],f[n],s[n-1]】=【f[n-1],f[n-1]+f[n-2],s[n-2]+f[n-1]】 容易得到这个3×3的矩阵A是: 0 1 0 1 1 1 0 0 1

这种方法的矩阵规模是(r+1)*(r+1)

f(1)=f(2)=s(1)=1 ,所以,有

【f(1),f(2),s(1)】* A  = 【f(2),f(3),s(2)】

故:【f(1),f(2),s(1)】* A^(n-1)  = 【f(n),f(n+1),s(n)】

(五)   数列f[n]=f[n-1]+f[n-2]+n+1,f[1]=f[2]=1的前n项和s[n]=f[1]+f[2]+……+f[n]的快速求法(不考虑高精度).

解法:

考虑1×5的矩阵【f[n-2],f[n-1],s[n-2],n,1】, 我们需要找到一个5×5的矩阵A,使得它乘以A得到如下1×5的矩阵【f[n-1],f[n],s[n-1],n+1,1】 即:【f[n-2],f[n-1],s[n-2],n,1】* A  =【f[n-1],f[n],s[n-1],n+1,1】

=【f[n-1], f[n-1]+f[n-2]+n+1,s[n-2]+f[n-1],n+1,1】 容易构造出A为: 0 1 0 0 0 1 1 1 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 1 1

故:【f(1),f(2),s(1),3,1】* A^(n-1)  = 【f(n),f(n+1),s(n),n+2,1】

一般地,如果有f[n]=p*f[n-1]+q*f[n-2]+r*n+s 可以构造矩阵A为: 0  q  0  0  0 1  p  1  0  0 0  0  1  0  0 0  r  0  1  0 0  s  0  1  1

更一般的,对于f[n]=Sigma(a[n-i]*f[n-i])+Poly(n),其中0<i<=某常数c, Poly (n)表示n的多项式,我们依然可以构造类似的矩阵A来解决问题。 设Degree(Poly(n))=d, 并规定Poly(n)=0时,d=-1,此时对应于常系数线性齐次递推关系。则本方法求前n项和的复杂度为: ((c+1)+(d+1))3*logns

例如:A(0) = 1 , A(1) = 1 , A(N) = X * A(N - 1) + Y * A(N - 2) (N >= 2);给定三个值N,X,Y求S(N):S(N) = A(0)2 +A(1)2+……+A(n)2。

解:

考虑1*4 的矩阵【s[n-2],a[n-1]^2,a[n-2]^2,a[n-1]*a[n-2]】

我们需要找到一个4×4的矩阵A,使得它乘以A得到1×4的矩阵

【s[n-1],a[n]^2,a[n-1]^2,a[n]*a[n-1]】

即:【s[n-2],a[n-1]^2,a[n-2]^2,a[n-1]*a[n-2]】* A = 【s[n-1],a[n]^2,a[n-1]^2,a[n]*a[n-1]】

= 【s[n-2]+a[n-1]^2 , x^2 * a[n-1]^2 + y^2 * a[n-2]^2 + 2*x*y*a[n-1]*a[n-2] ,

a[n-1]^2 , x*a[n-1]^2 + y*a[n-2]a[n-1]】

可以构造矩阵A为:

1     0    0    0

1    x^2   1    x

0    y^2   0    0

0    2xy   0    y

故:【S[0],a[1]^2,a[0]^2,a[1]*a[0]】 * A^(n-1) = 【s[n-1],a[n]^2,a[n-1]^2,a[n]*a[n-1]】

所以:【S[0],a[1]^2,a[0]^2,a[1]*a[0]】 * A^(n) = 【s[n],a[n+1]^2,a[n]^2,a[n+1]*a[n]】

若A = (B * C ) 则AT = ( B * C )T = CT * BT

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2014-09-20 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档