前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >专访田渊栋 | Torch升级版PyTorch开源,Python为先,强GPU加速

专访田渊栋 | Torch升级版PyTorch开源,Python为先,强GPU加速

作者头像
新智元
发布2018-03-26 17:36:44
1.3K0
发布2018-03-26 17:36:44
举报
文章被收录于专栏:新智元

【新智元导读】 PyTorch今天发布,这是一个支持强大的 GPU 加速的张量计算(类似numpy),构建基于 tape 的 autograd 系统的深度神经网络的深度学习研究平台。这是numpy 的替代,以使用 GPU 的能力,能够提供最大的灵活性和速度。田渊栋在接受专访时表示,新的平台不像以前 torch 需要clone_many_times。另外从 numpy ndarray 可以转到torch.Tensor,不需要copy。

专访Facebook研究员田渊栋和PyTorch作者Soumith

新智元 :田博士,关于PyTorch的发布,请问可以采访您几个问题嘛?

田渊栋 :哦,你要问什么?我可以把问题转给Soumith。

新智元 :请问 PyTorch 除了是基于 Python,其它架构是否与 Torch 一样?

田渊栋 :基本C/C++这边都是用的torch原来的函数,但在架构上加了 autograd 这样就不用写backward 函数,可以自动动态生成computational graph 并且自动求导,反向传递后自动回收内存,这个让写程序变得更方便了。另一个重要的不同是权值(weights)和activation/gradInput分开了,这样同一个layer 可以复用很多次,存储的时候也不用 clear gradient,不像以前 torch 需要clone_many_times。另外从 numpy ndarray 可以转到torch.Tensor,不需要copy。

Lua这边一直有每个 thread 2G的限制,这个对写多线程的程序不是很有利。Python有GIL,所以一般用 multiprocessing 写程序,PyTorch针对这个有比较好的支持,比如支持进程间共享内存(这个对parameter server有利),支持shared Cuda context,等等。

我自己已经在用了,写了一个增强学习的框架,效果还是不错的。

新智元 :tensorflow也支持 python,请问这两种有什么区别呢?

Pytorch作者Soumith:像TensorFlow, Theano,Caffe以及CNTK都是静态的计算图结构。而PyTorch这边是动态地生成计算图结构(Computational Graph)的,所以可以在训练时动态改变图的拓扑,而不用改代码重新开始。

新智元:对GAN 和 深度强化学习支持怎么样?

田渊栋 :自带的tutorial里面已经有GAN的样本了,RL的框架我在写,在一些例子上已经达到了目前的最好水平。

新智元:您指的一些例子是什么类型的例子呢?

比如说OpenAI Gym Atari game Breakout-v0。

HN评论:深度学习库生态没有停滞

几个月前人们还说,深度学习库生态系统开始稳定。我从来不这么认为。深度学习库的最新前沿是确保对动态计算图的有效支持。

当需要完成的工作量是可变的时,动态计算图形出现。这可能是在我们处理文本时,一个例子是几个字,而另一个是文本的段落,或者当我们对可变大小的树结构执行操作时。这个问题在某些的领域尤其突出,例如自然语言处理。

PyTorch 很好地解决了这个问题,如 Chainer 和 DyNet。事实上,Pytorch 的构建直接从 Chainer 获得,尽管重构了并且设计得更快了。我已经看到所有这些在最近几个月,特别是在许多研究人员进行领域的前沿研究重新产生兴趣。当你使用新的架构时,你希望在框架允许范围内,获得最大的灵活性。

另一面,TensorFlow 不能很好地处理这些动态图问题。虽然有一些原始的动态结构,但它们不灵活,通常相当有限。在不久的将来,有计划允许 TensorFlow 变得更加动态,但添加它是一个挑战,特别是还要有效地做。

披露:我的Salesforce Research团队广泛使用Chainer,我的同事James Bradbury是PyTorch的贡献者,而它处于隐身模式。我们计划从Chainer过渡到PyTorch,以便将来的工作。

PyTorch 官网介绍

PyTorch 是一个 python 包,提供以下两个高级功能:

强大的 GPU 加速的张量计算(类似numpy)

构建基于 tape 的 autograd 系统的深度神经网络

在需要时,你可以再使用你喜欢的其他 python 包来扩展 PyTorch,例如 numpy,scipy 和Cython。

在粒度级别上,PyTorch 是一个由以下部分组成的库:

通常可以把 PyTorch 作为:

numpy 的替代,以使用 GPU 的能力;

一个深度学习研究平台,能够提供最大的灵活性和速度。

以下是更详细介绍:

一个支持 GPU 的 Tensor 库

如果你使用 numpy,那么你已经在使用 Tensors(也就是 ndarray)。

PyTorch 提供的 Tensors 支持 CPU 或 GPU,并为大量的计算提供加速。

我们提供多样的 tensor 程序以加速并适应用户的科学计算需要,如 slicing, 索引, 数学运算,线性代数,缩减。而且,速度非常快!

动态神经网络:基于 tape 的 Autograd

PyTorch 具有独特的构建神经网络的方法:使用并重放 tape recorder。

大多数框架,如 TensorFlow,Theano,Caffe 和 CNTK 都是静态的。使用者必须构建一个神经网络,并重复使用相同的结构。更改网络表现的方式意味着必须从头开始。

PyTorch 使用一种被称为反向模式自动微分(Reverse-mode auto-differentiation)的技术,能够让用户以零延迟或开销的方式任意改变网络表现。我们的灵感来源于几个相关话题如 autograd,autograd,Chainer 等的研究论文,包括当前的和过去的论文。

虽然这种技术不是 PyTorch 独有的,但它是迄今为止最快的实现之一。在研究中使用 PyTorch,你将得到最快的速度和最好的灵活性。

以Python为先

PyTorch 不是把 Python 绑到 C++ 框架上去,而是深度集成到 Python 语言中。你可以可以就像你用 numpy / scipy / scikit-learn 之类的一样使用。你可以用 Python 本身写新的神经网络层,可以用你最喜欢的库或者包,例如 Cython 和 Numba。我们的目标是尽量不要重新造轮子。

实践经验

PyTorch 符合直觉、好理解、易用。当你执行一行代码,它马上运行,不是跟异步的。当你进入 debug 或者收到错误信息进行 stack trace,都很容易理解。stack trace point 就是你代码的地方。我们不希望你因为差劲的 stack trace 或者 不同步和模糊的运行,而花上几个小时 debug。

又快又稳

PyTorch 具有最小的框架开销。 我们集成加速库,如英特尔MKL和NVIDIA(CuDNN,NCCL),以最大化速度。 在核心,它的CPU和GPU Tensor和神经网络后端(TH,THC,THNN,THCUNN)作为独立的库用 C99 API编写。

它们是成熟的,已经测试了多年。

因此,PyTorch是相当快 - 无论你运行小或大的神经网络。

相比 Torch 或其他一些框架,PyTorch的内存使用是非常高效的。 我们为GPU编写了自定义内存分配器,以确保您的深度学习模型具有最大的内存效率。 这使你能够训练比以前更大的深度学习模型。

轻松扩展

编写新的神经网络模块,或 PyTorch的Tensor API 的使用,其设计非常直接和最小的抽象。

你可以使用torch API或你最喜欢的基于numpy的库(如SciPy)在 Python 中编写新的神经网络层。

如果你想用C / C ++编写你的图层,我们提供一个基于cffi的扩展API,它是高效的,并且有最小的样板。没有需要编写的包装代码。 你可以在这里看到一个例子:https://github.com/pytorch/extension-ffi

目前使用PyTorch的公司:

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2017-01-19,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 新智元 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
GPU 云服务器
GPU 云服务器(Cloud GPU Service,GPU)是提供 GPU 算力的弹性计算服务,具有超强的并行计算能力,作为 IaaS 层的尖兵利器,服务于生成式AI,自动驾驶,深度学习训练、科学计算、图形图像处理、视频编解码等场景。腾讯云随时提供触手可得的算力,有效缓解您的计算压力,提升业务效率与竞争力。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档