DeepMind新论文:用认知心理学方法打开深度学习的黑箱

唐旭 李林 编译整理 量子位 出品 | 公众号 QbitAI

最近,DeepMind在Arxiv上发布了Interpreting Deep Neural Networks using Cognitive Psychology,将认知心理学的方法引入深度神经网络的研究。

这是DeepMind入选今年ICML(机器学习国际会议)的论文之一。在公开论文的同时,他们还在官方博客上对这篇论文做了介绍。

为什么要用认知心理学方法来研究深度神经网络呢?

我们经常在新闻中看到,深度神经网络的能力不断提升,在图像识别、语音识别以及玩各种游戏的能力上,一一超越了人类。

不过,随之而来的也是越来越复杂的架构,和越来越看不懂的决策过程。

也就是所谓的“黑箱”问题。

黑箱

现在,每次提到深度学习,“黑箱”这个词似乎如影随形。DeepMind的论文中说,“这种不透明性不仅阻碍了尝试提升这些模型的基础性研究,也影响了它们在实际场景中的落地。”

怎么打开这个黑箱,成了研究界关注的一大问题。很多团队想开发“可解释的人工智能”,让AI解释自己的行为。但是,Google工程总监、AI经典教材《人工智能:一种现代的方法》的第二作者Peter Norvig说,这根本就行不通

人类都不擅长不了自己,就别指望机器了。

DeepMind这篇论文,正是把研究人类心智这个大黑箱的方法,用到了深度神经网络上:通过测量神经网络的行为来推断内在的认知机制。

他们借用了一个用以说明人类认知过程的实验,来理解深度神经网络怎样解决图像分类任务。

形状偏好

DeepMind这篇论文,借用了发展心理学中研究儿童如何学习物体和词对应关系的方法,来分析深度神经网络。

认知心理学研究表明,人类儿童在将物体和词对应起来的过程中,存在三种偏好:

整体偏好:当你指着一个物体,说出一个词,孩子会假设这个词指的的整个物体,而非部件;

分类偏好:孩子会假设一个词指的是物体所属的基本类别;

形状偏好:孩子会假设一个名词的意思是基于物体的形状,而不是它的颜色或质地。

DeepMind借用的,是研究形状偏好的认知实验,因为认知心理学在这方面的研究最为丰富。

DeepMind测量深度神经网络的形状偏好所用的刺激物样本,由印第安纳大学认知发展实验室的Linda Smith提供

DeepMind所用的经典形状偏好实验过程如下:

1. 给深度神经网络看三个物体的图片:1)基本调查物体、2)形状匹配但颜色不匹配的物体、3)颜色匹配但形状不匹配的物体。

2. 比较神经网络在分配标签时,为物体1和2分配相同标签的次数,和为物体1和3分配相同标签的次数所占比例如何。

实验示意图

DeepMind的实验表明,深度神经网络和人类一样,具有“形状偏好”。

论文摘要

深度神经网络(DNN)在众多领域的复杂任务上都有着卓越的表现,它迅速地刷新着我们对于这些问题的认知。

过往的工作只着眼于推进我们对于这些模型的理解,但对于认知心理学家在这些问题上已有的描述、理论和实验方法,却没有加以充分利用。

为了发掘这些工具的潜在价值,我们选择了在发展心理学中一种用来“解释儿童如何学习物体和词对应关系”的固定分析方法,并将其应用到DNN上。

用和原有认知心理学实验类似的刺激物数据集进行测试,我们发现,那些在ImageNet上训练的、最好的单个样本学习(one shot learning)模型表现出了一种与在人类身上观察到的相似的偏好:它们更喜欢根据形状来对物体进行分类,而不是颜色。

在这种偏好的程度在架构相同但seed不同的模型上,会有非常大的差异,甚至会在训练过程中随着seed而波动,尽管它们最终在分类上的表现近乎相同。

这些结果证明了认知心理学工具在发掘DNN隐含计算属性上的能力,同时也为我们提供了一种用于人类字词学习的计算模型。

相关链接

论文地址: https://arxiv.org/pdf/1706.08606.pdf

博客文章: https://deepmind.com/blog/cognitive-psychology/

原文发布于微信公众号 - 量子位(QbitAI)

原文发表时间:2017-06-29

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏AI科技评论

洞见 | 香港科技大学杨强教授专注研究的这项新兴技术,说不定能造就真正的“智能”

迁移学习,简单的说,就是能让现有的模型算法稍加调整即可应用于一个新的领域和功能的一项技术。这个概念目前在机器学习中其实比较少见,但其实它的潜力可以相当巨大。杨强...

2785
来自专栏机器之心

GMIS 2017 | 第四范式首席研究科学家陈雨强:机器学习模型,宽与深的大战

机器之心原创 机器之心编辑部 5 月 27 日,机器之心主办的为期两天的全球机器智能峰会(GMIS 2017)在北京 898 创新空间顺利开幕。中国科学院自动化...

3636
来自专栏AI科技评论

学界 | 好奇心驱动学习,让强化学习更简单

雷锋网 AI 科技评论按:强化学习在最近几年中都是最热门的研究领域之一,但是复杂环境中难以训练、训练后难以泛化的问题始终没有得到完全的解决。好奇心驱动的学习是一...

963
来自专栏AI科技大本营的专栏

OpenAI NLP最新进展:通过无监督学习提升语言理解

【AI 科技大本营导读】近日,OpenAI 在其官方博客发文介绍了他们最新的自然语言处理(NLP)系统。这个系统是可扩展的、与任务无关的,并且在一系列不同的 N...

1273
来自专栏机器之心

模拟世界的模型:谷歌大脑与Jürgen Schmidhuber提出「人工智能梦境」

选自arXiv 作者:David Ha、Jürgen Schmidhuber 机器之心编译 人类可以在应对各种情况时在大脑中事先进行充分思考,那么人工智能也可以...

3348
来自专栏AI科技评论

干货 | “回归分析”真的算是“机器学习”吗?

是什么将“统计”从“机器学习”中分离出来的?个被讨论过无数次的问题。关于这个问题的文章有很多,人们对其好坏莫衷一是。但是我发现,在“统计”和“机器学习”的争论上...

3287
来自专栏人工智能头条

OpenAI NLP最新进展:通过无监督学习提升语言理解

931
来自专栏计算机视觉战队

深度学习的昨天、今天和明天

机器学习是人工智能领域的一个重要学科。 自从20世纪80年代以来, 机器学习在算法、理论和应用等方面都获得巨大成功。2006年以来, 机器学习领域中一个叫“ 深...

3534
来自专栏机器学习算法工程师

阿里资深 AI 工程师教你逐个击破机器学习核心算法

近年来,随着 Google 的 AlphaGo 打败韩国围棋棋手李世乭之后,机器学习尤其是深度学习的热潮席卷了整个 IT 界。

1723
来自专栏机器之心

业界 | 44篇论文强势进击CVPR 2018,商汤科技的研究员都在做哪些研究?

自 2012 年以来,经过视觉领域诸多学者们的不懈努力,「物体识别」、「人脸检测」等传统任务的性能在一定程度上达到饱和,因此纵观本届 979 篇入选论文,我们会...

1243

扫码关注云+社区

领取腾讯云代金券