前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >机器学习集成算法:XGBoost模型构造

机器学习集成算法:XGBoost模型构造

作者头像
double
发布2018-04-02 14:03:54
8460
发布2018-04-02 14:03:54
举报
文章被收录于专栏:算法channel算法channel

《实例》阐述算法,通俗易懂,助您对算法的理解达到一个新高度。包含但不限于:经典算法,机器学习,深度学习,LeetCode 题解,Kaggle 实战。期待您的到来!

01

回顾

昨天介绍了XGBoost的基本思想,说到新加入进来的决策树必须能使原已有的更好才行吧,那么将XGBoost这个提升的过程如何用数学模型来表达呢?

02

XGBoost整体模型

机器学习的有监督问题,通常可以分为两步走:模型建立(比如线性回归时选用线性模型),根据目标函数求出参数(比如球出线性回归的参数)。对于XGBoost,也是做有监督任务了,也可以按照这个过程去分析,它的模型表示为如下,k表示树的个数,f表示构建的每个数结构,xi表示第i个样本,xi在每个树上的得分值的和就是xi的预测值,

它的目标函数表示为如下,其中等号右侧第一项表示所有样本点的误差和,第二项表示对每棵树的惩罚项(我们知道,惩罚项是用来使得预测的模型不那么复杂的方法,这也是为了提高模型的泛化能力),原始目标函数形式如下:

其中上标 t 代表第 t 轮集成

总之,我们就是要让预测值接近真实值,同时要让树模型尽可能的简单。接下来,看看在集成的过程中,如何尽可能地使得目标函数尽可能地小。

03

如何集成

XGBoost是串行集成的,这是与随机森林的不同之处,详细看下这个过程,期初只有一棵树,后来yi2时,加入进来f2,依次递推,第 t轮的预测模型,等于保留前面 t-1 轮的模型预测,和新来的 ft,前面说过f可以看做一颗树的构造。

将上面的递推公式带入到初始目标函数后得到,第一次改进目标函数后得到:

上式中等号的第二项是正则化惩罚项,是为了限制树的叶子节点的个数,防止树变得过于庞大的,它等于:

上式怎么用呢?举个例子,如下图,一共3个叶子节点,则 T = 3,小男孩这个叶子节点的权重为+2,所以平方为4,因此惩罚项等于如下吧:

目标函数至此做了一步演化,下面进一步将等号右边第一项误差函数项,在此采用常用的平方误差项,进行目标函数的第二次演化,如下,

XGBoost模型还给出了一个更一般的误差模型,上面我们不是根据平方误差项吗,如果采取一个通用性更强的模型,应该怎么写的,可以看到 ft 相当于一个当前轮次的变化量,可以想到 f(x + dx) = f(x) + f(x)'dx + 0.5f(x)''dx + ... 这就是泰勒展开式,一般地取前三项就能保证问题的精度了,所以我们进行目标函数的第二次,更一般的演化,得到下式:

这是第一次演化后的公式,进行泰勒展开,关键要分清谁是 x , 谁是 dx 吧! 可以看到 与参数 t 相关的才是公式的变量,所以 x 为 y(t-1), dx 相当于 ft(xi) 吧,yi是给定样本编号 i的真实值吧,为常数,

所以,对其展开后为

其中,

在进行第 t 轮集成的时候,loss( yi, yi(t-1) )这项已经知道了吧,是个常数了,比如预测一个价格为每股2元的股票,在第 t-1 轮的时候我们就得出股票的价格为1.5元,所以在第 t 轮的时候,loss就等于0.5吧,因此 loss那项是可以拿掉的。

好了,至此,我们就把目标函数演化了一部分了,但是,XGBoost真正NB的地方,是下面这节,将对样本的遍历,转化为对叶子节点的遍历,这是巧妙的地方。

04

XGBoost最精彩的部分:转化的巧妙

首先,晒出两个映射,第一个映射是 q,在树结构 f 已知的情况下表,给出一个样本 xi ,通过 q 可以得出 xi 位于的叶子节点编号,如同下图,给出小女孩,通过 q 可以得出 leaf2,即属于叶子编号2,

晒出的第二个映射为 w ,这个不难理解,就像神经网络中神经元的权重参数,即 小女孩的权重参数为 +0.1,综合起来分析,

w ( q ( 小女孩 ) ) = +0.1

因此,可以将下式:

进行第三次演化后为下式:

这还不是最精彩的地方,因为上式还是对样本 i 从1到n的遍历,接下来,这个式子,将对样本的遍历转化为了对叶子节点的遍历,这是XGBoost的最重要的一步转化,进行第四次演化后为下式,

其中 ,

表示:第 j 个叶子中包括的所有样本, wj表示第 j 个叶子的权重。

综上所述,将

再由上带入进去,进一步化简为,

令,Gj, Hj 分别为:

目标函数经过第五次演化后为下式,

这就是目标函数的最终形式了。

05

求解目标函数

看到这个目标函数,就已经非常明了了,它是关于wj 的一维二次函数吧,所以对它求最小值,还是非常简单的吧,这个就不讲了,直接求出 wj 在取得什么值时,loss值会取到最小值,

我们费了这么多劲,至此终于推算出,在第 t 轮集成时,到底该选择哪个树结构 ft 的衡量标准了,哪个树结构 ft 能使得在t-1轮的目标函数上减少的最多,也就是 obj 越小越好吧,我们就选择它吧。

05

分割所得的信息增益

对于每次扩展,是要枚举所有可能的分割方案,比较分割后的信息增益,求出最大值对应的分割点。比如要枚举所有 x < constant 这样的条件,对于某个分割,要计算 constant 左边和右边,还有没有切分这个节点时的信息增益求出来,求解信息增益的公式如下:

如果,Gain 大于某个阈值,则这个分割是有必要的,然后根据枚举的结果,取出分割能获得的最大增益。

对于这次特定的分割,

GL = g1 + g4

HL = h1 + h4

GR = g2 + g5 + g3

HR = h2 + h5 + h3

然后带入信息增益的公式,求出本次分割获得信息增益,然后枚举所有可能的分割得到的信息增益,选取最大值,假定得出如下所示的最佳分割点,此时 constant = 0.9,则可以得到 x < 0.9时,左子树只含有一个节点,右子树含有剩余节点,这种 ft 树结构。

总结下,以上介绍了XGBoost的目标函数原理推导,进一步得出了某个分割的信息增益,进而得出构造 ft 的过程。明天根据XGBoost的开源库,实战演练下XGBoost做分类和回归的过程。

算法channel已推送的更多文章:

1 机器学习:不得不知的概念(1)

2 机器学习:不得不知的概念(2)

3 机器学习:不得不知的概念(3)

4 回归分析简介

5 最小二乘法:背后的假设和原理(前篇)

6 最小二乘法原理(后):梯度下降求权重参数

7 机器学习之线性回归:算法兑现为python代码

8 机器学习之线性回归:OLS 无偏估计及相关性python分析

9 机器学习线性回归:谈谈多重共线性问题及相关算法

10 机器学习:说说L1和L2正则化

11 机器学习逻辑回归:原理解析及代码实现

12 机器学习逻辑回归:算法兑现为python代码

13 机器学习:谈谈决策树

14 机器学习:对决策树剪枝

15 机器学习决策树:sklearn分类和回归

16 机器学习决策树:提炼出分类器算法

17 机器学习:说说贝叶斯分类

18 朴素贝叶斯分类器:例子解释

19 朴素贝叶斯分类:拉普拉斯修正

20 机器学习:单词拼写纠正器python实现

21 机器学习:半朴素贝叶斯分类器

22 机器学习期望最大算法:实例解析

23 机器学习高斯混合模型(前篇):聚类原理分析

24 机器学习高斯混合模型(中篇):聚类求解

25 机器学习高斯混合模型(后篇):GMM求解完整代码实现

26 高斯混合模型:不掉包实现多维数据聚类分析

27 高斯混合模型:GMM求解完整代码实现

28 数据降维处理:背景及基本概念

29 数据降维处理:PCA之特征值分解法例子解析

30 数据降维处理:PCA之奇异值分解(SVD)介绍

31 数据降维处理:特征值分解和奇异值分解的实战分析

32 机器学习集成算法:XGBoost思想

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2017-12-11,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 程序员郭震zhenguo 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档