各种编程语言的深度学习库整理

来自:CSDN.NET 链接:http://www.csdn.net/article/2015-09-15/2825714(点击尾部阅读原文前往,文章中相关链接请点击阅读原文查看) 原文:http://www.teglor.com/b/deep-learning-libraries-language-cm569/ 译者简介:赵屹华,计算广告工程师@搜狗,前生物医学工程师,关注推荐算法、机器学习领域。

本文总结了Python、Matlab、CPP、Java、JavaScript、Lua、Julia、Lisp、Haskell、.NET、R等语言的深度学习库,赶紧收藏吧!

Python

1、Theano是一个python类库,用数组向量来定义和计算数学表达式。它使得在Python环境下编写深度学习算法变得简单。在它基础之上还搭建了许多类库。

  • Keras是一个简洁、高度模块化的神经网络库,它的设计参考了Torch,用Python语言编写,支持调用GPU和CPU优化后的Theano运算。
  • Pylearn2是一个集成大量深度学习常见模型和训练算法的库,如随机梯度下降等。它的功能库都是基于Theano之上。
  • Lasagne是一个搭建和训练神经网络的轻量级封装库,基于Theano。它遵循简洁化、透明化、模块化、实用化和专一化的原则。
  • Blocks也是一个基于Theano的帮助搭建神经网络的框架。

2、Caffe是深度学习的框架,它注重于代码的表达形式、运算速度以及模块化程度。它是由伯克利视觉和学习中心

(Berkeley Vision and Learning Center, BVLC)以及社区成员共同开发。谷歌的DeepDream项目就是基于Caffe框架完成。这个框架是使用BSD许可证的C++库,并提供了Python调用接口。

3、nolearn囊括了大量的现有神经网络函数库的封装和抽象接口、大名鼎鼎的Lasagne以及一些机器学习的常用模块。

4、Genism也是一个用Python编写的深度学习小工具,采用高效的算法来处理大规模文本数据。

5、Chainer在深度学习的理论算法和实际应用之间架起一座桥梁。它的特点是强大、灵活、直观,被认为是深度学习的灵活框架。

6、deepnet是基于GPU的深度学习算法函数库,使用Python语言开发,实现了前馈神经网络(FNN)、受限玻尔兹曼机(RBM)、深度信念网络(DBN)、自编码器(AE)、深度玻尔兹曼机(DBM)和卷积神经网络(CNN)等算法。

7、Hebel也是深度学习和神经网络的一个Python库,它通过pyCUDA控制支持CUDA的GPU加速。它实现了最重要的几类神经网络模型,提供了多种激活函数和模型训练方法,例如momentum、Nesterov momentum、dropout、和early stopping等方法。

8、CXXNET是一个基于MShadow开发的快速、简洁的分布式深度学习框架。它是一个轻量级、易扩展的C++/CUDA神经网络工具箱,提供友好的Python/Matlab接口来进行训练和预测。

9、DeepPy是基于NumPy的深度学习框架。

10、DeepLearning是一个用C++和Python共同开发的深度学习函数库。

11、Neon是Nervana System 的深度学习框架,使用Python开发。

相关链接:从Theano到Lasagne:基于Python的深度学习的框架和库

Matlab

1、ConvNet 卷积神经网络是一类深度学习分类算法,它可以从原始数据中自主学习有用的特征,通过调节权重值来实现。

2、DeepLearnToolBox是用于深度学习的Matlab/Octave工具箱,它包含深度信念网络(DBN)、栈式自编码器(stacked AE)、卷积神经网络(CNN)等算法。

3、cuda-convet是一套卷积神经网络(CNN)代码,也适用于前馈神经网络,使用C++/CUDA进行运算。它能对任意深度的多层神经网络建模。只要是有向无环图的网络结构都可以。训练过程采用反向传播算法(BP算法)。

4、MatConvNet是一个面向计算机视觉应用的卷积神经网络(CNN)Matlab工具箱。它简单高效,能够运行和学习最先进的机器学习算法。

CPP

1、eblearn是开源的机器学习C++封装库,由Yann LeCun主导的纽约大学机器学习实验室开发。它用基于能量的模型实现卷积神经网络,并提供可视化交互界面(GUI)、示例以及示范教程。

2、SINGA是Apache软件基金会支持的一个项目,它的设计目标是在现有系统上提供通用的分布式模型训练算法。

3、NVIDIA DIGITS是用于开发、训练和可视化深度神经网络的一套新系统。它把深度学习的强大功能用浏览器界面呈现出来,使得数据科学家和研究员可以实时地可视化神经网络行为,快速地设计出最适合数据的深度神经网络。

4、Intel® Deep Learning Framework提供了Intel®平台加速深度卷积神经网络的一个统一平台。

Java

1、N-Dimensional Arrays for Java (ND4J) 是JVM平台的科学计算函数库。它主要用于产品中,也就是说函数的设计需求是运算速度快、存储空间最省。

2、Deeplearning4j 是第一款商业级别的开源分布式深度学习类库,用Java和Scala编写。它的设计目的是为了在商业环境下使用,而不是作为一款研究工具。

3、Encog是一个机器学习的高级框架,涵盖支持向量机、人工神经网络、遗传编程、贝叶斯网络、隐马可夫模型等,也支持遗传算法。

JavaScript

1、Convnet.js 由JavaScript编写,是一个完全在浏览器内完成训练深度学习模型(主要是神经网络)的封装库。不需要其它软件,不需要编译器,不需要安装包,不需要GPU,甚至不费吹灰之力。

Lua

1、Torch是一款广泛适用于各种机器学习算法的科学计算框架。它使用容易,用快速的脚本语言LuaJit开发,底层是C/CUDA实现。Torch基于Lua编程语言。

Julia

1、Mocha是Julia的深度学习框架,受C++框架Caffe的启发。Mocha中通用随机梯度求解程序和通用模块的高效实现,可以用来训练深度/浅层(卷积)神经网络,可以通过(栈式)自编码器配合非监督式预训练(可选)完成。它的优势特性包括模块化结构、提供上层接口,可能还有速度、兼容性等更多特性。

Lisp

1、Lush(Lisp Universal Shell)是一种面向对象的编程语言,面向对大规模数值和图形应用感兴趣的广大研究员、实验员和工程师们。它拥有机器学习的函数库,其中包含丰富的深度学习库。

Haskell

1、DNNGraph是Haskell用于深度神经网络模型生成的领域特定语言(DSL)。

.NET

1、Accord.NET 是完全用C#编写的.NET机器学习框架,包括音频和图像处理的类库。它是产品级的完整框架,用于计算机视觉、计算机音频、信号处理和统计应用领域。

R

1、darch包可以用来生成多层神经网络(深度结构)。训练的方法包括了对比散度的预训练和众所周知的训练算法(如反向传播法或共轭梯度法)的细调。

2、deepnet实现了许多深度学习框架和神经网络算法,包括反向传播(BP)、受限玻尔兹曼机(RBM)、深度信念网络(DBP)、深度自编码器(Deep autoencoder)等等。

链接:http://www.csdn.net/article/2015-09-15/2825714(点击尾部阅读原文前往,文章中相关链接请点击阅读原文查看)

免责声明:本文系网络转载。版权归原作者所有。如涉及版权,请联系删除!

原文发布于微信公众号 - 智能算法(AI_Algorithm)

原文发表时间:2016-09-04

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏机器之心

机器之心论文解读:可用于十亿级实时检索的循环二分嵌入模型(RBE)

论文链接:https://arxiv.org/pdf/1802.06466.pdf

11520
来自专栏新智元

【Bengio高徒演讲】深度学习三板斧:网络架构、学习算法和时空层级(48PPT)

【新智元导读】Kyunghyun Cho是纽约大学计算机科学与数据科学助理教授。他是蒙特利尔大学博士后,导师是 Yoshua Bengio。他于2014年初在阿...

37250
来自专栏数据科学与人工智能

【Python环境】python数据挖掘领域工具包

Python在科学计算领域,有两个重要的扩展模块:Numpy和Scipy。其中Numpy是一个用python实现的科学计算包。包括: 一个强大的N维数组对象Ar...

36270
来自专栏AI科技评论

深度 | 英伟达深度学习Tensor Core全面解析

AI 科技评论消息,不久前,NVIDIA在SIGGRAPH 2018上正式发布了新一代GPU架构——Turing(图灵),黄仁勋称Turing架构是自2006年...

80910
来自专栏人工智能头条

各种编程语言的深度学习库整理

21520
来自专栏智能算法

基于 10 大编程语言的 30 个深度学习库

本文介绍了包括 Python、Java、Haskell等在内的一系列编程语言的深度学习库。 Python Theano 是一种用于使用数列来定义和评估数学表达的...

39050
来自专栏机器学习之旅

浅入浅出深度学习理论实践前言CNN/RNN理解Attention理解深度学习传统领域的应用关于深度学习一些想法

之前在知乎上看到这么一个问题:在实际业务里,在工作中有什么用得到深度学习的例子么?用到 GPU 了么?,回头看了一下自己写了这么多东西一直围绕着traditio...

32020
来自专栏数据科学与人工智能

【Python环境】Python机器学习库

Python在科学计算领域,有两个重要的扩展模块:Numpy和Scipy。其中Numpy是一个用python实现的科学计算包。包括: 一个强大的N维数组对象Ar...

366100
来自专栏AI研习社

看硅谷数据工程师如何使用TensorFlow构建、训练和改进RNN

在本文中,我们提供了一个用于训练语音识别的RNN的简短教程,其中包含了GitHub项目链接。 ? 作者:Matthew Rubashkin、Matt Molli...

44940
来自专栏机器之心

教程 | 如何用50行代码构建情感分类器

语言把人类联系在一起。语言是一种工具,它既可以让我们把想法和感受传达给另一个人,也能让我们理解别人的想法和感受。我们大多数人从 1 岁半到 2 岁开始说话。人脑...

10100

扫码关注云+社区

领取腾讯云代金券