专栏首页机器学习算法与Python学习TensorFlow实战:CNN构建MNIST识别(Python完整源码)

TensorFlow实战:CNN构建MNIST识别(Python完整源码)

在文章(TensorFlow实战:SoftMax手写体MNIST识别(Python完整源码))中,我们MNIST手写体识别数据集,使用TensorFlow构建了一个softMAX多分类器,达到了91%的正确率,相比人类98%的识别率,这实在是天糟糕了。为此,本文实现一个稍微复杂的模型:卷积神经网络来改善对MNIST的识别率,这将会达到大概99.2%的准确率。下面让我们一步步的实现该模型,具体的Python源码已上传至我的GitHub:https://github.com/ml365/softmax_mnist/blob/master/cnn.py,点击文末的阅读原文直接跳转下载页面。

权重初始化

为了创建这个模型,我们需要创建大量的权重和偏置项。这个模型中的权重在初始化时应该加入少量的噪声来打破对称性以及避免0梯度。由于我们使用的是ReLU神经元,因此比较好的做法是用一个较小的正数来初始化偏置项,以避免神经元节点输出恒为0的问题(dead neurons)。为了不在建立模型的时候反复做初始化操作,我们定义两个函数用于初始化。

def weight_variable(shape): initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial) def bias_variable(shape): initial = tf.constant(0.1, shape=shape) return tf.Variable(initial)

卷积和池化

TensorFlow在卷积和池化上有很强的灵活性。我们怎么处理边界?步长应该设多大?在这个实例里,我们会一直使用vanilla版本。我们的卷积使用1步长(stride size),0边距(padding size)的模板,保证输出和输入是同一个大小。我们的池化用简单传统的2x2大小的模板做max pooling。为了代码更简洁,我们把这部分抽象成一个函数。

def conv2d(x, W): return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') def max_pool_2x2(x): return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')

第一层卷积

现在我们可以开始实现第一层了。它由一个卷积接一个max pooling完成。卷积在每个5x5的patch中算出32个特征。卷积的权重张量形状是[5, 5, 1, 32],前两个维度是patch的大小,接着是输入的通道数目,最后是输出的通道数目。 而对于每一个输出通道都有一个对应的偏置量。

W_conv1 = weight_variable([5, 5, 1, 32]) b_conv1 = bias_variable([32])

为了用这一层,我们把x变成一个4d向量,其第2、第3维对应图片的宽、高,最后一维代表图片的颜色通道数(因为是灰度图所以这里的通道数为1,如果是rgb彩色图,则为3)。

x_image = tf.reshape(x, [-1,28,28,1])

We then convolve x_image with the weight tensor, add the bias, apply the ReLU function, and finally max pool. 我们把x_image和权值向量进行卷积,加上偏置项,然后应用ReLU激活函数,最后进行max pooling。

h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) h_pool1 = max_pool_2x2(h_conv1)

第二层卷积

为了构建一个更深的网络,我们会把几个类似的层堆叠起来。第二层中,每个5x5的patch会得到64个特征。

W_conv2 = weight_variable([5, 5, 32, 64]) b_conv2 = bias_variable([64]) h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) h_pool2 = max_pool_2x2(h_conv2)

密集连接层

现在,图片尺寸减小到7x7,我们加入一个有1024个神经元的全连接层,用于处理整个图片。我们把池化层输出的张量reshape成一些向量,乘上权重矩阵,加上偏置,然后对其使用ReLU。

W_fc1 = weight_variable([7 * 7 * 64, 1024]) b_fc1 = bias_variable([1024]) h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64]) h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

Dropout

为了减少过拟合,我们在输出层之前加入dropout。我们用一个placeholder来代表一个神经元的输出在dropout中保持不变的概率。这样我们可以在训练过程中启用dropout,在测试过程中关闭dropout。 TensorFlow的tf.nn.dropout操作除了可以屏蔽神经元的输出外,还会自动处理神经元输出值的scale。所以用dropout的时候可以不用考虑scale。

keep_prob = tf.placeholder("float") h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

输出层

最后,我们添加一个softmax层,就像前面的单层softmax regression一样。

W_fc2 = weight_variable([1024, 10]) b_fc2 = bias_variable([10]) y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)

训练与评估

为了进行训练和评估,我们使用与之前简单的单层SoftMax神经网络模型几乎相同的一套代码,只是我们会用更加复杂的ADAM优化器来做梯度最速下降,在feed_dict中加入额外的参数keep_prob来控制dropout比例。然后每100次迭代输出一次日志。

cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv)) train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) sess.run(tf.initialize_all_variables()) for i in range(20000): batch = mnist.train.next_batch(50) if i%100 == 0: train_accuracy = accuracy.eval(feed_dict={ x:batch[0], y_: batch[1], keep_prob: 1.0}) print "step %d, training accuracy %g"%(i, train_accuracy) train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5}) print "test accuracy %g"%accuracy.eval(feed_dict={ x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0})

以上代码,在最终测试集上的准确率大概是99.2%。目前为止,我们已经学会了用TensorFlow快捷地搭建、训练和评估一个复杂一点儿的深度学习模型。

本文分享自微信公众号 - 机器学习算法与Python学习(guodongwei1991)

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2017-04-14

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 柯洁中盘再败!谷歌乘AlphaGo之势强推TPU,与英伟达必有一战

    【新智元导读】人机对战第二场,柯洁认输,AlphaGo中盘获胜将比分改写为2:0,TPU可谓是本次AlphaGo升级的秘密武器。 由此,许多人认为,谷歌与英伟达...

    新智元
  • 黄仁勋GTC主旨演讲:从摩尔定律的尽头到深度学习大爆炸,发布新一代GPU,市值突破700亿美元( PPT)

    【新智元导读】英伟达CEO黄仁勋一年一度的GTC主旨演讲凌晨结束,新智元第一时间带来了深度报道(带PPT的)。本次大会最受关注的是,英伟达发布了新一代的GPU,...

    新智元
  • MobileNet教程(2):用TensorFlow搭建安卓手机上的图像分类App

    王瀚宸 编译自 Hackernoon 量子位 报道 | 公众号 QbitAI 上周末,量子位翻译了一份MobileNet教程,其中讲述了怎样在一个新的数据集上重...

    量子位
  • 教程 | 如何使用TensorFlow和自编码器模型生成手写数字

    本文详细介绍了如何使用 TensorFlow 实现变分自编码器(VAE)模型,并通过简单的手写数字生成案例一步步引导读者实现这一强大的生成模型。 全部 VAE ...

    IT派
  • 解惑 | 深度学习入行门槛太低?

    进入门槛太低正在毁掉深度学习的名声! 这么一篇标题“忧心忡忡”的讨论帖,毫无意外的在reddit上炸了。为什么发起这么一个讨论?先看看原po主是怎么说的。 很...

    IT派
  • 【彭博】智能市场开源竞赛,谷歌遥遥领先

    【新智元导读】彭博社著名科技记者Jark Clark日前撰文,分析谷歌开源深度学习软件TensorFlow对业界影响。开源有益,也让谷歌获得最大好处——让Ten...

    新智元
  • 从零开始用 TensorFlow 分析情绪,硅谷网红带你飞

    Siraj Raval 作为深度学习领域的自媒体人在欧美可以说是无人不知、无人不晓。 凭借在 Youtube 上的指导视频,Siraj Raval 在全世界吸...

    AI研习社
  • 深度学习动手入门:GitHub上四个超棒的TensorFlow开源项目

    问耕 编译自 Source Dexter 量子位 出品 | 公众号 QbitAI 作者简介:akshay pai,数据科学工程师,热爱研究机器学习问题。Sour...

    量子位
  • ICLR-17最全盘点:PyTorch超越TensorFlow,三巨头Hinton、Bengio、LeCun论文被拒,GAN泛滥

    【新智元导读】机器学习&深度学习盛会 ICLR 2017 落下帷幕。本届会议都有哪些亮点?体现了哪些技术变化及趋势?对整个 AI 业界有什么影响?新智元为你带来...

    新智元
  • 【干货】谷歌 TensorFlow 工程负责人:标记大规模图片的最简方法

    【新智元导读】前谷歌 TensorFlow 工程负责人 Peter Warden 和大家分享了利用 OSX 系统里的 Find 快速为大规模图片打标签,以优化深...

    新智元

扫码关注云+社区

领取腾讯云代金券