专栏首页灯塔大数据深度|你不需要大数据,你需要的是正确的数据

深度|你不需要大数据,你需要的是正确的数据

你需要的并不是大数据,而是正确的数据。以Uber为例,Uber每天都能收集到海量数据,但Uber会分析全部数据吗?不会,它只用那些能让产品更快连接乘客和司机的关键数据。

问三个问题去挖掘你做决策所需要的正确数据:

哪些地方在浪费资源(时间、金钱、人力、原料等)?

如何自动化地减少浪费?

针对1与2,需要哪些数据?

以下是全文:

大数据这个词已经无处不在。无论是大企业、小企业、传统行业、新兴行业,每一家公司都加入了 大数据 的浪潮,好像有了大数据就能解决所有问题。

企业通过社会、天气、政府数据来预测供应链中断。大量的用户数据被各个网站收集利用,一些公司甚至开始利用大量的文本交流数据建立算法,从而与客户进行对话。

但现实的情况是,我们对大数据重要性的痴迷,往往会产生误导。是的,在一些情况下,从数据中能获取有价值的东西,但对于创新者来说,数据量和规模不是关键的因素,找到正确的数据才是关键。

关键不在于数据的大小

在谈到大数据作用的时候,我们总是拿Uber来举例,他们好像是用大数据获得成功的最典型的例子。毫无疑问,Uber从数据中获得了财富。依靠他们的应用,Uber从司机和乘客那里获得了实时的数据,让他们能够知道何时、何处人们对车辆有着较高的需求。

但Uber的成果并不是依靠他们所采集的大量数据,这些大数据使公司能够进入新的市场,但Uber的成功来自非常不同的东西,小的、但是正确的数据:车辆调度数据。

在Uber诞生之前,我们打的是传统的出租车。虽然传统出租车看上去与互联网没有什么关系,但是其实它们才是一种依靠大数据的东西。原因是,传统出租车依赖的是“人眼网络”:无数人站在城市中的某一个点,在看到出租车后马上招手。虽然貌似与信息科技无关,但是实际上人们在打车的过程中,同样使用了计算,人脑的计算:我们在大脑中收集并且分析数据。

Uber提出了一个更优雅的解决方案,人们不再需要自己跑到街上去用眼睛收集数据,不用再用大脑去处理数据,而是让Uber为我们提供正确的数据来完成打车任务。城市中谁需要打车?他在哪里?离他最近的车在哪里?需要多长时间能接到乘客?正是凭借这些正确的数据,Uber和滴滴才得以成功的在出租车行业内掀起了革命。

Uber的优雅解决方案是停止运行可视化数据-生物的异常检测算法,只需要正确的数据来完成工作。城市里的人需要搭车,他们在哪里?这些关键信息让Uber、Lyft、滴滴出行彻底改变了一个行业。

用正确的数据完成工作

有时候正确的数据规模也很大,也有的时候正确的数据规模很小。对于创新者,关键在于哪些关键的数据对企业最有帮助,要找到正确的数据,我建议你思考下面三个问题。

问题1:是什么在浪费公司的资源?

大部分汽油都在日常运营中浪费大量的资源。拿鲜花零售业来举个例子,大多数花店中50%的库存最终都会被浪费掉。正因如此,才产生了UrbanStems和Bouqs这样的鲜花配送服务,它们通过正确的数据帮助花店减少浪费。

“哪里有浪费,哪里就有机会”。无论你是工业生产、零售还是法务调查公司,搞清楚哪些因素会浪费你的资源,都能够帮你找到正确的数据。

问题2:如何通过自动化来减少浪费?

在确定哪些因素会造成资源浪费之后,下一步就是要减少浪费。人类擅长于做某些类型的决定,比如在品牌营销方面,这部分应该交给人类解决。

但是当涉及到做简单的重复性经营决定的时候(比如把出租车派到每个地方,如何给产品定价,向花店订多少鲜花),机器比人更擅长。虽然有许多传统的人类做决定的商业模式是可预测的,现在我们能分辨更多的数据,来进行自动化。

例如,有传言称亚马逊正打算取消所有的人工定价团队,让算法来给大部分商品进行定价。在零售商眼里,这是完全不可思议的行为。但是如果亚马逊的算法能够胜任定价工作,它将为亚马逊减少成本、库存,以及推出更好的可预测的新产品介绍,这一切将会产生巨大的竞争优势。

问题3:你需要哪些数据来完成这一切?

只要你理解了传统系统当中的浪费,并且知道了浪费造成的后果,最后一步是去问一个简单的问题。如果你可以有任何数据来帮助你做出完美的决定,它会是什么?

在Uber这个例子里,为了完成自动化指派司机工作,从而减少资源的闲置,他们需要知道潜在的乘客可能在城市的哪些位置。另一个例子是通用电气旗下的产业互联网软件Predix,公司在机器发生故障前提前知道,以减少维护工作的成本,以及减少停机时间的浪费。对于寻求降低成本的保险公司,他们想知道一个糖尿病患者血糖下降的时候,以帮助自动化进行围绕病人的干预措施,减少不善疾病的影响。

这就是你所需要的数据,通过处理大量的信息找到他们是很好的,如果你通过建立一个新的应用程序来捕获它们更好。

大部分公司花了太多的时间提倡大数据,但是却几乎没有花时间去想清楚哪些数据才是正确的有价值的数据。

内容来源:数据观

本文分享自微信公众号 - 灯塔大数据(DTbigdata)

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2016-12-01

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 做蚱蜢、蜘蛛还是狐狸?新兴大数据公司的四种理念

    随着大数据概念的提出,新兴相关数据公司也犹如雨后春笋般出现,想象一下每早与大数据创业梦想一起醒来,这确实是一种美妙的感觉。粗浅地想象一下貌似处理大数据很容易...

    灯塔大数据
  • 中国通信学会信息通信网络技术委员会2017年年会成功举办,三大分论坛聚焦行业热点精彩纷呈

    2017年9月19日,由中国通信学会信息通信网络技术委员会主办,中国电信北京研究院承办的《中国通信学会信息通信网络技术委员会2017年年会暨行业云与大数据高峰论...

    灯塔大数据
  • 洞察|报考大数据专业前你需要看完这些

    高考阅卷紧锣密鼓,月底即将陆续放榜,届时考生将会面临与高考同样重要的问题:志愿填报。今年有一个获批的新增专业备受瞩目——数据科学与大数据技术。 “大数据”概念...

    灯塔大数据
  • Python GUI 07----Listbox

    Listbox为列表框控件,它可以包含一个或多个文本项(text item),可以设置为单选或多选

    py3study
  • 二次剩余Cipolla算法学习笔记

    若对于给定的\(n, P\),存在\(x\)满足上面的式子,则乘\(n\)在模\(p\)意义下是二次剩余,否则为非二次剩余

    attack
  • 使用prometheus采集ingress-nginx数据grafan展示效果

    https://akomljen.com/get-kubernetes-cluster-metrics-with-prometheus-in-5-minutes...

    三杯水Plus
  • SCCM2012之NAP网络保护

    一、微软的网络访问保护(NAP)是随着Windows Server 2008面世的限制网络访问保护服务。采用NAP的强制系统符合健康要求,可以使得不符合健康要求...

    李珣
  • Cocos游戏开发入门最佳实践

    因为公司的业务需求,近期学习了CocosCreator这款游戏引擎的开发,也基于此上线了一款游戏,因此写这系列文章记录一下我从入门到项目发布的学习过程。

    异名
  • 快速搭建ELK7.5版本的日志分析系统--ELK实战篇

    现在索引也可以创建了,现在可以来输出nginx、apache、message、secrue的日志到前台展示(Nginx有的话直接修改,没有自行安装)

    用户6641876
  • velocity分页模板

    以前用后台java拼接分页代码,不利于修改。找到一份velocity模板。 1 <!-- 分页模板 --> 2 #macro(pager $url ...

    Ryan-Miao

扫码关注云+社区

领取腾讯云代金券