前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >干货|在选择数据库的路上,我们遇到过哪些坑?

干货|在选择数据库的路上,我们遇到过哪些坑?

作者头像
灯塔大数据
发布2018-04-09 11:54:53
1.3K0
发布2018-04-09 11:54:53
举报
文章被收录于专栏:灯塔大数据

我是 FactGem 的首席技术官 Clark Richey。FactGem 是一家小公司。

在这里我想说一说我们是怎么开始接触数据库技术的,然后我们做出了哪些改变,我们还需要做出哪些决定,哪些东西影响了我们的决策流程。我还会介绍我们调查研究过的各种数据库和技术,以及我们在使用 Neo4j 过程中发现的一些最佳做法和最差做法。

2014 年夏天之后,很多事情都发生了变化,我也会对我们在这段时期测试的各种数据库做出一个仔细的评估。

选择数据库

关系数据库

最初,我们的创始人准备把数千份不同的文件放在一起,用来执行有效搜索、制定业务决策、进行数据分析和创建数据可视化。

我们在研究过程中发现,关系数据库 (RDBMS) 并不适合我们。当然,我们的本能反应就是使用这种数据库,毕竟我们已经用了这么长时间。但关系数据库需要固定的架构,并且创建数据库时就要设置好这一固定架构。用户必须创建各种表,确定关系,然后创建 JOIN 连接:

而我们需要的是比关系模型更为灵活的数据库。

XML 数据库

我曾经接触过 NoSQL 数据库。那时我在 MarkLogic 公司工作。MarkLogic 是一家企业级模式自由型 XML 数据库公司,该公司还存储文档并提供 JSON 格式。这种数据库无论在上传信息还是执行搜索时,速度都较快,并且模式自由。

我们确实从这一初始概念点(POC)学到了一些东西,但顾名思义,概念点本身就是一种不够全面的看法。我们依次对这一看法的各个子集进行测试,然后选取部分样本集,发现能够进行快速搜索和导航。

我们认识到,文档之间的隐含信息比存储在每个文档内的信息要有意思得多。于是我们试着弄清楚能不能创建一个数据库好让我们利用这些关系。

我们再次将信息建模,形成文档,后者非常适合我们的数据集。但使用文档数据库时,用户真正关心的当然是文档了。因此,尽管我们可以进行 JOIN 连接,但仍然不适用于大型数据集。

我们可以在文档内进行快速搜索,但不能对文档之间的关系进行快速搜索。对于这项操作而言,这一数据库并不合适。

资源描述框架 (RDF) / 三元组存储

为了解决问题,MarkLogic 把我们的所有文档从 XML 迁移到资源描述框架 (RDF),这一框架又被称为三元组存储。这无疑是个大手笔,也是非常与众不同的对待数据的方式,我们决定,就是它了。

这不算太难,因为我们很小心地从架构的剩余部分解耦了持久层。最后花了大约两个月时间,然后我们终于能在不影响应用程序剩余部分的情况下进行迁移。

我们为什么选择资源描述框架?因为它是专为连接带有统一资源标识符的信息而设计的,还拥有一种叫做 SPARQL 的标准化查询语言。

简而言之,资源描述框架是有关主/谓/宾关系的,从下面看得出来,其模型非常简单:

下面是资源描述框架概念的简单象形图:

如果我想说 Clark 认识 John Forrest,那么 Clark 就是资源。资源具有名字、姓氏和类型等属性,也具有关系。下面这些资源描述框架的三元组可以体现这一示意图:

我们的数据库确实很给力,总体来说我们也相当满意。利用资源描述框架,我们不仅重建了整个概念点,还实现了对数据库的更多操作 —— 包括探索各种关系。虽然在各个机构和行业之间进行大范围的数据分享时非常方便,但这并不是我们使用数据库的主要目的。

资源描述框架非常冗长,它是一种基于非属性的图形。由于所有内容都表现为节点,要想进行复杂的关系查询,必须先到达目的地然后再一同返回,这给我们带来了一些性能问题。虽然资源描述框架没有成为我们的最终选择,但它确实帮我们看清了专注于数据关系的希望。

作为一家小型初创公司,在这么短的时间里经历了这么多种数据库,我们有些担心。即使这样,我们仍然明白,从一开始就要选择合适的数据库是多么的重要,于是我们顶着重重压力,在没有做好充分的数据库工作的情况下,我们决定尝试图形数据库。

改变从这里开始:图形数据库

最初我们认为图形数据库和资源描述框架一个样。但我们知道,要描述两个人之间的关系,用资源描述框架太复杂了。我们希望能有一个非常非常简单的工具,让我们能够给节点分配属性,然后我们在一个属性图形模型里找到了以下内容:

于是我们又明白了,我们不能使用关系数据库,因为它们在关系上的表现不够出色。JOIN 连接、外键和索引既不真实,也不具体;它们只是我们画在纸上用来方便理解的图案。反过来说,在图形数据库中,关系被表达成具体实体。

TitanDB 数据库

我们先研究了 TitanDB,它各项强大的功能和极佳的可扩展性一开始让我们非常振奋。可惜的是,TitanDB 的启动和维护都非常复杂,必须得从 Cassandra 或 HBase 后台运行。

我们关心的另一个功能是最终一致存储,它并不符合 ACID 原理。这表示,如果我们要长时间运行大型图形数据库,最后可能会出现不一致现象。

TitanDB 确实提供了一个基本可长期运行的流程,能够始终如一地穿行整个图形,以期探测和修复不一致问题。除了这些不一致之外,TitanDB 还可以作为不基于图形的本地存储之上的层。

OrientDB 数据库

接下来我们又了解了 OrientDB。OrientDB 启动起来似乎简单得多,还具备大量针对文档的功能。但从社区的评论来看,性能和可扩展性是个问题。另外,OrientDB 把自己宣传成多模式数据库 ——图形和 SQL。这种宣传缺乏对纯图形操作的针对性,让我很是忧心,我们不仅想要做图形,还要做好图形。

发现 Neo4j

然后我们发现了 Neo4j。Neo4j 可高度扩展,对节点、关系或索引的数量没有限制。同时 Neo4j 入门也相当简单,这对我们是很大的诱惑;在使用第三个数据库时,必须得迅速投入运行。

性能表现极佳,扩增也非常广泛,并且只专注于图形用例。Titan 确实提供映射(作为本地节点类型)支持,但我们知道,即使没有这一支持我们也可以继续下去。

总的来说,我们之所以选择 Neo4j,有以下原因:

我们使用 Neo4j 企业版已有大约 16 个月,体验一直非常美好。Neo4j 易于使用,设置和维护也很简单,实现甚至超出了我们的预期。它让我们超越了我们的概念点,非常非常迅速地投入运行和构建新事物。

内容来源:OneAPM官方博客

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2016-07-14,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 灯塔大数据 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
数据库
云数据库为企业提供了完善的关系型数据库、非关系型数据库、分析型数据库和数据库生态工具。您可以通过产品选择和组合搭建,轻松实现高可靠、高可用性、高性能等数据库需求。云数据库服务也可大幅减少您的运维工作量,更专注于业务发展,让企业一站式享受数据上云及分布式架构的技术红利!
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档