专栏首页灯塔大数据当产品经理遇到数据分析这个槛,怎么办?

当产品经理遇到数据分析这个槛,怎么办?

导读:大数据时代的到来,对产品经理提出了更加严格的数据分析要求。一个懂数据分析的产品经理可以利用数据驱动产品设计优化,并提升客户体验。那么,产品经理到底该关注哪些数据呢?小产品如何运用A/B测试?产品经理该如何学习数据分析呢?

本文根据GrowingIO创始人&CEO张溪梦与产品经理在线交流问题整理编辑,希望对产品经理提升数据分析能力有较好的帮助。

如何获取数据,获取什么样的数据?

Q1:一个电商平台,应该着重关注什么数据,怎样设计数据后台?

A1:电商数据的核心指标一般有:GMV,Transations(交易数量),ASP(均价),购物车大小,用户的复购率,购买频次,年度复购率。这样的指标很多。:我觉得有三类的指标需要关注,第一:交易数据,第二:用户行为数据,第三:用户来源数据。

这里面,我觉得您可以根据自己的资源状况来设优先级。最直接的就是交易数据,然后最重要的是行为数据,因为所有的电商提供的是“互联网产品”而不仅仅是“所销售的产品”。第三就是流量的数据的分析,因为这里涉及到获取客户的成本。

Q2 : 如何收集自己需要的数据,面对杂乱无序的数据该如何分析,如何保证数据的准确性?

A2: 不同行业,不同业务会有相同宏观的指标,也有细化到本行业,本业务的指标。需要从宏观到微观的拆解指标。大量的数据如何为我们所用?需要了解产品业务,明确问题的本质,大量的深入的产品实践。大胆的提出假设,然后通过数据理性的验证。我们还会有更多的线下线上活动帮助大家拆解数据分析指标。

关于数据准确性可以不同的工具去验证。比如同时安装多个数据统计工具。比如比较客户端和服务端的数据统计差异。

Q3: 做内容的网站,如何结合业务判断需要获取哪些和用户相关的数据?

A3: 最基本的指标是:页面浏览量、访问量、独立访客数、跳出率、页面停留时长、网站停留时长、退出率、转化率,页面退出率……

内容热度:分享次数、推荐次数、点赞次数、评论数

用户:新用户、活跃用户、沉寂用户占比的变化,增长的趋势等等

Q4: 不强制登陆的app,如何定义独立用户。目前我们是获取手机信息,但并不准确。

A4: 不强制登录,可以在app和设备的基础信息在不侵犯用户隐私的情况下,计算一个比较固定的ID。这个ID应该基本上能够判断一个稳定的用户。但是它并不和手机号码或者设备号做深度绑定。在网站上类似cookie的方法。

Q5: 若想了解某个行业,有哪些平台可以拿到相对靠谱数据以供分析?

A5:这个部分需要的工具有很多,看您的业务是以App为主,还是Web为主。基本上应该从流量,市场占有率,还有用户交互使用深度、舆情等角度入手。每一个都有不同的工具能够辅助。比如说Alexa,AppAnnie,艾瑞的互联网行业研究报告,Gartner的研究报告,IDC,TalkingData的游戏行业研究等等都是一些好的起点。

数据分析如何驱动产品优化?

Q1:2B企业应应用如何做基于数据驱动的产品设计与改进?

A1:SaaS企业的数据驱动产品设计非常重要。首先,最基础的开始是Product Usage Metrics。因为SaaS产品都要解决一个企业应用的场景。 而这个场景在业务上的被重现频次,决定了SaaS软件的基本交互频次。所以登录批次,使用深度(事件数/访问)等最基本的指标是最粗放的指标。

最重要的,是产品每一个功能的使用者数量,使用的频次,转化漏斗,转化率。

请记住,这些分析必须要在“用户”级别能够做分析,而不是一个单纯流量级别的分析,才有未来的核心意义。然后将usage在客户公司级别进行汇总,比较在公司级别的使用度,使用深度和未来的续约付费率一般呈正相关。

还有就是整个SaaS页面的优化,比如说注册流,注册转化率,注册用户向深度用户的转化率,深度用户向付费用户的转化率。SaaS的数据分析是很深入的话题,我就是分享一些最基本的指标。

Q2:关于留存率,互联网金融借贷产品是典型的低频,一个人不可能经常上来借钱或者出借,看留存率还有意义么?

A2:留存率有意义,因为留存是一个普遍的概念。唯一的一个就是您专注“频次”的不同。比如说买汽车,美国的整个汽车购买行为,不可能用天来衡量,而要用年。因此美国的汽车制造商,就持续的按照“月份”给每一个不同的区隔发送不同的营销方案。互联网金融也有他的产品生命周期,这要求您来制定营销策略,找到那个“频次”,以此为开始进行营销产品规划。

Q3: 支付转化率比较低,这种情况通过什么点,什么角度去分析用户行为?

A3:先要全面的找到支付转化的全部关键转化路径,然后看每个转化路径上面关键点之间的转化率。比如到商品详情页面,可以从搜索页面、分类页面、频道页面、品牌页面、活动页面、首页、关联销售推荐、甚至直接访问到达商品详情页面。每个转化路径和转化量的占比都要考虑。然后再找出量大且转化率低的路径先优化,量小转化率高的路径可以加强并且scale。

Q4:针对工具类的app,有什么好的数据分析方法吗?需要注意哪些问题?

A4:我觉得取决于您的app在产品发展的哪个周期?工具类的APP,我个人认为核心,特别是早期还是应该关注“usage”,用户的使用度,和使用深度/黏度,也就是留存。然后要关注增长,其次未来要关注变现。用增长黑客的“海盗法则”来讲的话,就是在“AARRR”逻辑里面,首先关注留存(Retention)。

●Acquisition 获取用户

●Activation 激发活跃

●Retention 提高留存

●Revenue 增加收入

●Referral 传播推荐

产品运营如何学习数据分析?

Q1:统计学、分析和挖掘的书看了不少,如何系统的学习数据分析与挖掘,希望能得到指点!

A1:首先如果您有时间,看看精益分析《lean analytics》,这本书是我在美国很好的朋友写的书。另外一本,“build measure,learn”也是我在LinkedIn的团队成员写的书。都是很好的入门教材。再次我觉得可以看一下基础的统计书籍,因为数据分析的核心要有基本的统计知识。Using R系列是很好的起点。

Q2:数据方面偏菜鸟用户,有哪些数据可视化工具值得推荐?

A2:tableau是一个很好的数据可视化工具。自己开发可以试试highchart和D3 document。

Q3:可以推荐几本关于数据的书吗?

A3:Lean Analytics, 范冰的增长黑客,Lean Startup,中文的深入浅出数据分析,Tableau的很多爱好者推崇的人人数据分析师等等。不过我觉得好的数据分析的书籍,不如一次好的数据分析实际操作加上分享您能学到的更多。主要是概念的基本掌握,然后迅速落地实践,复盘分析结果,然后继续迭代。特别是产品分析,最关键的是要把数据分析和用户行为以及产品设计用一体的角度来考虑,然后分解成三个部分来验证。就会有闭环。

“无埋点”数据分析工具的原理和运用

Q1:以前我们做数据统计,数据分析,都必须要攻城狮在相关行为中埋点;GrowingIO的无埋点统计分析是什么原理?

A1: GrowingIO希望能够直接从业务人员的角度出发,让业务人员最快的获得想要分析的数据,并且同时减轻工程人员埋点的痛苦。GrowingIO的无埋点技术支持多个平台,iOS, Android,Web和HTML5。主要的原理是在网页和HTML5的里面加入一次SDK代码,在iOS和Android加入一次SDK代码,之后不用再加载SDK代码,用户使用网页和APP客户端的时候尽可能全的收集用户的行为数据,通过异步且加密的方式传输数据。

Q2:GrowingIO能帮助优化产品设计和用户体验吗?

A2:GrowingIO是新一代基于用户行为的数据分析产品,目前提供的用户转化、留存、细查、分群功能都可以帮助产品经理优化产品设计,进而提升用户体验。

以在线商城页面设计为例,用户浏览商品、提交订单,点击支付,完成购买形成了客户的核心路径,但是日常业务中经常遇到客户转化率过低的情形。GrowingIO的用户转化漏斗可以帮助产品经理分析客户到底在哪一步流失较高,然后借助用户细查功能来验证前面的假设猜想。从而提升帮助产品经理找出产品设计的缺陷,后期尽快优化。

使用A/B测试的正确姿势

Q: 小产品是否适合使用“A/B test”测试优化产品,前期的技术准备是否麻烦?

A: 产品非常早期,我个人不建议用A/B测试,因为最主要的问题是我们没有很多资源开发两套或者更多的产品方案。而且早期数据量小,不一定能够有“统计学意义”,往往测试者需要把流量分解,这样就需要等待结果。对于低流量的app/网站,没有足够的资源来等。工程上也有一定的挑战。所以我建议早期产品关注核心指标,分解核心指标为“可执行的指标”比A/B测试更重要。同时要迅速迭代。A/B测试对于产品线丰富的业务还是有很多作用的。看您的资源配置了。

内容来源:GrowingIO

本文分享自微信公众号 - 灯塔大数据(DTbigdata)

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2016-03-25

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 荐读|大数据会撒谎?如何戳破大数据的谎言

    数据科学家使用统计分析工具深度挖掘数据潜在的内容时经常会遭遇到大数据挖的坑,实际上这些坑并不是只有大数据才有,大自然本身就存在很多虚假的相关性,大数据只是更加...

    灯塔大数据
  • 干货|Bilibili (B站)200万用户数据爬取与分析

    该爬虫仅供学习使用 B站用户爬虫 B站视频爬虫 B站弹幕下载器 文件介绍 bilibili_user.py:爬虫文件 bilibili_user_info.sq...

    灯塔大数据
  • 大数据入门的四个必备常识

    一、大数据分析的五个基本方面 1、可视化分析 大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为...

    灯塔大数据
  • 如何实现用户行为的动态采集与分析

    哈喽,大家好,我是清音,来自政采云前端团队。从去年开始负责用户行为采集与分析体系的建设。很高兴有机会能在这里给大家分享我们从 0-1 建设用户采集与分析系统的经...

    政采云前端团队
  • 浅谈产品体验优化

    cwl_java
  • 初步总结页面间跳转动效

    最近一直在做交互规范总结的工作,在不断梳理页面间跳转逻辑的同时,发现页面间的逻辑关系并不能和页面间跳转的动效很好的结合上。虽然只是零点几秒的切换动效,却能在一定...

    前朝楚水
  • 数据分析模型有哪些?常见的这八种来了解一下!

    在进行数据分析时,那就会提及数据分析模型。在进行数据分析之前,首先要建立一个数据分析模型。根据模型的内容,将其细分为不同的数据指标以进行详细分析,最后得到所需的...

    数据前沿
  • 如何创建用户模型:问卷调查与数据分析

    很想写一些东西来总结总结自己的工作,可惜工作太忙一直也没顾得上来写。最近闲来想和大家讨论讨论关于创建用户模型的事情。 一、用户模型的建立与问卷数据的采集 Per...

    小莹莹
  • 【数据挖掘】大数据用户画像的方法、实践与行业应用

    从1991年Tim Berners-Lee发明了万维网(World Wide Web)开始,到20年后2011年,互联网真正走向了一个新的里程碑,进入了“大数据...

    陆勤_数据人网
  • 【扩展阅读】流氓软件你造吗?

    “流氓软件”是介于病毒和正规软件之间的软件,通俗地讲是指在使用电脑上网时,不断跳出的窗口让自己的鼠标无所适从;有时电脑浏览器被莫名修改增加了许多工作条,当用户打...

    腾讯大讲堂

扫码关注云+社区

领取腾讯云代金券