BZOJ4872: [Shoi2017]分手是祝愿

Description

Zeit und Raum trennen dich und mich.

时空将你我分开。B 君在玩一个游戏,这个游戏由 n 个灯和 n 个开关组成,给定这 n 个灯的初始状态,下标为

从 1 到 n 的正整数。每个灯有两个状态亮和灭,我们用 1 来表示这个灯是亮的,用 0 表示这个灯是灭的,游戏

的目标是使所有灯都灭掉。但是当操作第 i 个开关时,所有编号为 i 的约数(包括 1 和 i)的灯的状态都会被

改变,即从亮变成灭,或者是从灭变成亮。B 君发现这个游戏很难,于是想到了这样的一个策略,每次等概率随机

操作一个开关,直到所有灯都灭掉。这个策略需要的操作次数很多, B 君想到这样的一个优化。如果当前局面,

可以通过操作小于等于 k 个开关使所有灯都灭掉,那么他将不再随机,直接选择操作次数最小的操作方法(这个

策略显然小于等于 k 步)操作这些开关。B 君想知道按照这个策略(也就是先随机操作,最后小于等于 k 步,使

用操作次数最小的操作方法)的操作次数的期望。这个期望可能很大,但是 B 君发现这个期望乘以 n 的阶乘一定

是整数,所以他只需要知道这个整数对 100003 取模之后的结果。

Input

第一行两个整数 n, k。

接下来一行 n 个整数,每个整数是 0 或者 1,其中第 i 个整数表示第 i 个灯的初始情况。

1 ≤ n ≤ 100000, 0 ≤ k ≤ n;

Output

输出一行,为操作次数的期望乘以 n 的阶乘对 100003 取模之后的结果。

Sample Input

4 0 0 0 1 1

Sample Output

512

HINT

Source

感觉自己还是突破不了对省选题的恐惧心理

这题50分(实际80)暴力其实是很好想的

但是因为自己没怎么学过期望,所以一看到期望这两字就直接把这题弃了

思路:

对于每个灯来说,操作两次的结果与不操作相同的

因此我们可以预处理出初始局面需要的操作次数

约数的话直接O(nlogn)vector暴力求

这样的话最暴力的想法就是从大的向小的依次枚举,实际这就是最优策略

用dp[i]表示对于n盏灯,从需要按i次能全部熄灭到按i-1次能全部熄灭的期望

考虑这一次的情况

\frac{i}{n}的概率按到需要按的灯,此时的期望为\frac{i}{n}*1

\frac{n-i}{n}的概率按到不需要按的灯,此时的期望为\frac{n-i}{n}*(dp[i]+dp[i+1]+1)

那么dp[i]=\frac{i}{n}+\frac{n-i}{n}*(dp[i]+dp[i+1]+1)

化简一下

dp[i]=\frac{n}{i}+\frac{(n-i)dp[i+1]}{i}

这样就可以线性递推了

注意推的时候从n推就可以,因为最优状态下需要的操作次数一定小于等于n

答案为n!\sum_{i=1}^{need}

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#define int long long 
using namespace std;
const int MAXN=1e6+10;
const int mod=100003;
//#define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf,1,MAXN,stdin),p1==p2)?EOF:*p1++)
//int buf[1<<20],*p1=buf,*p2=buf;
inline int read()
{
    char c=getchar();int x=0,f=1;
    while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
    while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
    return x*f;
}
int N,k;
int a[MAXN];
vector<int>Yue[MAXN];
int need;
int dp[MAXN],inv[MAXN];
int fastpow(int a,int p)
{
    int base=1;
    while(p)
    {
        if(p&1) base=(base*a)%mod;
        a=(a*a)%mod;
        p>>=1;
    }
    return base%mod;
}
main()
{
    #ifdef WIN32
    freopen("a.in","r",stdin);
    #endif
    N=read();k=read();
    inv[1]=1;
    for(int i=2;i<=N;i++) inv[i] = ((-(mod/i)*inv[mod%i]%mod)+mod)%mod;
    for(int i=1;i<=N;i++) a[i]=read();
    for(int i=1;i<=N;i++)
        for(int j=i;j<=N;j+=i)
            Yue[j].push_back(i);
    for(int i=N;i>=1;i--)
        if(a[i])
        {
            for(int j=0;j<Yue[i].size();j++)
                a[Yue[i][j]]^=1;
            need++;
        }
    dp[N]=1;
    for(int i=N-1;i>k;i--) dp[i]=(N+(N-i)*dp[i+1])*inv[i]%mod;
    for(int i=k;i>=1;i--) dp[i]=1;
    int ans=0;
    for(int i=1;i<=need;i++) ans=(ans+dp[i])%mod;
    for(int i=1;i<=N;i++) ans=(ans*i)%mod;
    printf("%lld",ans);
    return 0;
} 

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏数据结构与算法

BZOJ 4318: OSU!

Description osu 是一款群众喜闻乐见的休闲软件。  我们可以把osu的规则简化与改编成以下的样子:  一共有n次操作,每次操作只有成功与失败之分...

30450
来自专栏Java 源码分析

枚举

​ 枚举就是尝试所有的可能性,尤其是当我们在确定一个问题是不是的这一类问题中尤其有用,例如说给一堆数,让我我们判断他们是不是素数,或者素数的数量的时候,这...

32260
来自专栏算法修养

POJ 1964&HDU 1505&HOJ 1644 City Game(最大0,1子矩阵和总结)

最大01子矩阵和,就是一个矩阵的元素不是0就是1,然后求最大的子矩阵,子矩阵里的元素都是相同的。 这个题目,三个oj有不同的要求,hoj的要求是5s,...

34640
来自专栏有趣的Python和你

Python数据分析之锁具装箱问题问题重述问题分析建模与求解

11730
来自专栏tkokof 的技术,小趣及杂念

Sweet Snippet系列 之 随机选择

  平日工作学习时总会遇到一些令人欣喜的代码段子(Snippet),虽然都很短小,但是其间所含的道理都颇有意味,遂而觉得应该不时的将她们记下,一来算作复习整理,...

12120
来自专栏编程之旅

数据结构——最小生成树(C++和Java实现)

快要一整个月没有更新博客了,之前的几周每周都想着要写,但是最后时间还是排不开,最近的状态是一直在写代码,一直在怼工作的需求,顺便刷刷算法题,国庆则是没心没肺的玩...

36240
来自专栏专注数据中心高性能网络技术研发

[LeetCode]Array主题系列{1,11,15,16,18,26,27,31,33,34题}

1.内容介绍 开一篇文章记录在leetcode中array主题下面的题目和自己的思考以及优化过程,具体内容层次按照{题目,分析,初解,初解结果,优化解,优化解结...

34860
来自专栏ACM算法日常

海战(线段树)- HDU 4027

这一篇是典型的线段树算法,这个算法在日常工作中可能非常少见,因为可以被常规算法所取代,但是在问题达到一定数量级之后,常规算法是很难搞定类似问题的...

11220
来自专栏潇涧技术专栏

Problem: Delete Number Problem

这题可以使用贪心策略,每次从高位向低位数,删除高位比低位数字小的那位上的数字,直到删除了k位之后,得到的数字肯定是最大值。

9320
来自专栏章鱼的慢慢技术路

Go指南练习_循环与函数

23820

扫码关注云+社区

领取腾讯云代金券