总第80篇
01|前言:
本篇接着上一篇决策树详解,CART是英文“classification and regression tree”的缩写,翻译过来是分类与回归树,与前面说到的ID3、C4.5一致,都是决策树生成的一种算法,同样也由特征选择、树的生成以及剪枝组成,既可以用于分类也可以用于回归。CART算法由决策树的生成以及决策树剪枝两部分组成。
02|CART的生成:
决策树的生成就是递归地构建二叉决策树的过程。对回归树用平方差最小化准则,对分类树用基尼指数最小化准则,进行特征选择,生成二叉树。
分类树与回归树的一个区别是:如果目标变量是离散型变量则用分类树,如果目标变量是连续型变量则用回归树。
2.1回归树的生成
回归树是用于目标变量是连续型变量的情况下,假设X与Y分别为输入和输出变量,并且Y是连续型变量,给定数据即D={(x1,y1),(x2,y2),...(xn,yn)},根据训练数据集D生成决策树。
前面说过,回归树的生成准则是平方差(总离差平方和:实际观察值与一般水平即均值的离差总和)最小化准则,即预测误差最小化,所以我们的目的就是找到一个分界点,以这个点作为分界线将训练集D分成两部分D1和D2,并且使数据集D1和D2中各自的平方差最小。然后然后再分别再D1和D2中找类似的分界点,继续循环,直到满足终止条件。
在具体找分解值的时候采用遍历所有变量的方法,依次计算平方差,选择平方差最小时对应的分解值。
2.2分类树的生成
分类树用基尼指数选择最优特征(与信息增益类似),同时决定该特征的最优二值切分点。
2.2.1基尼指数
分类问题中,假设有K个类,样本点属于第k类的概率为pk,则概率分布的基尼指数定义为:
对于二分类问题,若样本点属于第一类的概率为p,则概率分布的基尼指数为:Gini(p)=2p(1-p)。
对于样本给定的集合D,其基尼指数为:Gini(D)=1-∑(|Ck|/|D|)*2,这里Ck是D中属于第k类的样本子集,K是类的个数。
条件基尼指数:
上面公式表示在特征A的条件下,集合D的基尼指数,其中D1和D2表示样本集合D根据特征A是否取某一个可能值a被分割成的两部分。
基尼指数Gini(D)表示集合D的不确定性,基尼指数Gini(D,A)表示经A=a分割后集合D的不确定性。基尼指数数值越大,样本集合的不确定性越大。
2.2.2算法步骤
输入:训练数据集D,停止计算的条件
输出:CART决策树
根据训练数据集,从根节点开始,递归地对每个结点进行以下操作,构建二叉决策树:
算法停止计算的条件是结点中的样本个数小于预定的阈值,或样本集的基尼指数小于预定的阈值(样本基本属于同一类),或者没有更多特征。
03|CART剪枝:
我们再前面那一章节提过剪枝是为了避免数据发生过拟合现象,而避免这种情况发生的方法就是使损失函数最小化。
先看看损失函数的公式:
在α已知得情况下,要使上面得Cα(T)最小,就需要使|T|最小,即子树得叶节点数量最小;或者使训练误差最小,要使训练误差最小,就需要再引入新的特征,这样更会增加树得复杂度。所以我们主要通过降低|T|来降低损失函数,而这主要是通过剪去一些不必要得枝得到得。
但是在具体剪得过程中,我们需要有一个评判标准用来判断哪些枝可以剪,哪些使不可以剪得。而这个评判标准就是剪枝前后该树得损失函数是否减少,如果减小,就对该枝进行剪枝。
具体地,从整数T0开始剪枝,对T0的任意内部节点t,以t为单结点树(即该树没有叶节点)的损失函数是:Cα(t)=C(t)+α
以t为根节点的子树Tt的损失函数是:Cα(Tt)=C(Tt)+α|Tt|
当α=0或者充分小,有不等式:
当α继续增大时,在某一α处会有:
当α再继续增大时,在某一α处会有:
当下式成立时:
在这个时候,Tt与t有相同的损失函数值,而t的结点少,因此t比Tt更可取,对Tt进行剪枝。
为此,可以对T0中的每一内部节点t,计算g(t)=(C(t)-C(Tt))/(|Tt|-1),该式表示剪枝后整体损失函数减少的程度。在T0中剪去g(t)最小的Tt,将得到的子树作为T1,同时将最小的g(t)设为α1.T1为区间最小[α1,α2)的最优子数。如此剪枝下去,直至得到根节点,在这一过程中不断增加α的值,产生新的区间。
在剪枝得到的子树序列T0,T1,...,Tn中独立验证数据集,测试子树序列的T0,T1,...,Tn中各颗子树的平方误差或基尼指数。平方误差或基尼指数最小的决策树被认为是最优的决策树。
3.1算法步骤:
输入:CART算法生成的决策树T0
输出:最优决策树Tα
PS时刻:
本次无代码实现阶段,日后补上。