Excel依然是一款强大的数据可视化利器~

早期的数据小魔方用户大概都知道,我最初也是从学习Excel起步的,只是学习的深入了之后,才开开慢慢的迁移到R语言。

我往R语言转型并不代表自己开始放弃Excel或者觉得Excel不适合做可视化,只是想体验一下Excel外围的可视化世界是什么样子的,毕竟在这个大行业内,还活跃着太多可视化领域的佼佼者,譬如 PowerBI、Tableau等。

当然,这些软件各有特点,但是在要划分一个类别的话,我觉得可以划分为三类:

  • Excel(以及寄生于Excel平台的各种辅助软件dashboard、Think-cell-chart)
  • 桌面端可视化工具(以Tableau、PowerBI等)
  • 编程工具。(以R语言、Python以及各种js开源可视化库)

但若要继续对其进行简化分类的话,我觉得其实可以分为两类:

  • Excel家族;
  • 非Excel家族。

也许这里的分类大家会觉得摸不着头脑,我的理由是,数据可视化很重要的一步即是对原始业务数据结构的理解,而在Excel的图表库中,微软所设计的图形库是基于二维表的。(因为Excel自由灵活的表结构不限制变量类型,不识别因子变量(即用于构造模型或者用于图形映射))。

也许以上解释并不能令你满意,这里我只强调一点,同样制作一个多分类的柱形图(或者条形图),假若你获取的原始数据是三个字段,一个门店名称,一个季度标签,一个销售额,那么这种数据结构你是无法对其进行图表化呈现的,你需要借助Excel的数据透视功能,对其进行维度交叉透析,进而使用汇总表(二维表)进行多分类图表构建。

以上就是Excel中图表构建原理的大致过程,而除Excel之外的数据可视化产品,基本上都是使用一维表结构(长数据)来构建可视化图形的。其中因子变量(即通常意义上的分类变量)充当着至关重要的作用。

这也是用惯了Excel的小伙伴儿,如果想要迁移到其他可视化工具上,迈出的第一步往往无比艰难(也不能一概而论,假如你经常使用Excel的数据透视表功能,并且对数据库有所了解,对于数据的长宽转换应该早就烂熟于心了,这道坎不会困扰你太久)。

二维表有二维表的好处,即所见即所得,因为二表已经具备一定的图形化特征,而不单单是表了,但是二维表作图在效率上有着天然的劣势,即你会淡化对数据数据结构的理解,会被Excel的这种作图理念所吞噬,进而被绑架。(纯属个人愚见)

又扯远了,今天的主角仍然是Excel,我使用自己学习以来的案例来说明,Excel仍然是一款不折不扣的优秀可视化工具。

学习的第一步当然是模仿,所以才有了这些积淀很久的案例:

模仿可以快速提升你的“图感”,然后你会更大胆的去挑战高难度动作:

等有了足够的经验和技巧积累,尝试着自己找案例去做:

实习是很好的锻炼机会,可能你不需要做高难度高复杂度的工作,但是你能学到如何平衡技能与实际业务数据,融合并凝练细节。

Excel的强大远不止于此,如果你能习得名称管理器、开发工具与高级查询函数,那么制作动态仪表盘是分分钟的事儿,再将平时里积淀的优秀版式、配色方案等融入其中,那么你的工作价值一定会呈指数级增长。

原文发布于微信公众号 - 数据小魔方(datamofang)

原文发表时间:2017-06-15

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏张卫国的专栏

【SPA大赛】转化率预估中的用户偏好Emebeding

在Tencent广告算法大赛中,在对用户点击之后的转化情况预估时,笔者主要分享 Emebeding 降维(用户偏好分析)的技巧。

4470
来自专栏量子位

首个谷歌TensorFlow安全风险被腾讯找到:攻击成本低、迷惑性强

李根 发自 凹非寺 量子位 报道 | 公众号 QbitAI ? 首个TensorFlow安全风险被找到! 利用该风险,攻击者可以生成Tensorflow的恶...

3494
来自专栏奇点大数据

入门深度学习应该学什么

最近被人问的最多的一个问题是“我想入门深度学习,我应该学些什么”。 老实说,这个问题不是那么好回答,毕竟每个人的知识背景和技能背景实在是太不一样了。如果要假设...

3757
来自专栏ATYUN订阅号

AI Benchmark可以测试智能手机的神经网络性能

芯片制造商高通,华为和联发科有什么共同之处?所有这三种市场硬件架构都可以加速计算机视觉,自然语言处理以及智能手机,平板电脑和其他移动设备中的其他机器学习任务。麻...

1865
来自专栏机器之心

演讲 | 亚马逊机器学习总监Alex Smola:为什么你的机器学习代码运行速度慢

机器之心原创 作者:高静宜 2017 年 3 月 27 日,亚马逊云服务(AWS)机器学习总监 Alex Smola 到北京大学招贤纳士,并呈现了一场题为《为什...

3629
来自专栏新智元

深度学习动手实践:用 TensorFlow 打造“会看”的机器人

(文/Lukas Biewald)物体识别是当前机器学习最热门的方向。计算机早已能够识别如人脸、猫之类的物体,但识别更大范围里的任意物体对人工智能来说仍是难题。...

4646
来自专栏用户2442861的专栏

DL4J与Torch、Theano、Caffe、TensorFlow的比较

https://deeplearning4j.org/cn/compare-dl4j-torch7-pylearn

2332
来自专栏用户画像

推荐系统的召回

版权声明:本文为博主-姜兴琪原创文章,未经博主允许不得转载。 https://blog.csdn.net/jxq0816/article/details...

3763
来自专栏数据派THU

独家 | 6步教你用R语言制作动图

原文标题:How to create animated GIF images for data visualization using gganimate (i...

2847
来自专栏灯塔大数据

新浪微博的用户画像是怎样构建的?

用户画像一般是指将用户信息标签化的过程,在分析用户属性这种静态维度时,通过平台自身的合理引导便能获取到精准的用户信息,那么关于”用户兴趣“这种可变动态的属性该怎...

3716

扫码关注云+社区