中国的开源框架,何时能在最受欢迎开源深度学习框架榜单上显露名字呢?

Kears作者Fran?ois Chollet刚刚在Twitter贴出最近三个月在arXiv提到的深度学习框架,TensorFlow不出意外排名第一,Keras排名第二。随后是Caffe、PyTorch和Theano,再次是MXNet、Chainer和CNTK。

Keras作者Fran?ois Chollet刚刚在Twitter贴出一张图片,是近三个月来arXiv上提到的深度学习开源框架排行:

TensorFlow排名第一,这个或许并不出意外,Keras排名第二,随后是Caffe、PyTorch和Theano,再次是MXNet、Chainer和CNTK。

Chollet在推文中补充,Kears的使用在产业界和整个数据科学圈中最占主流,产业既包括大公司也包括创业公司。不过,在研究社区,Keras的份额要小很多。

这个统计结果是使用Google Search Index得到的。

这个排名让人想起来之前Fran?ois Chollet晒的另外一次排名(时间范围是2017年4月到7月,综合Github上issue、fork、contributors等数据得到的活跃度),也是TensorFlow和Keras排名第一和第二。

不过,在Github的那次排名,MXNet、PyTorch的名次明显上升。

针对近三个月来arXiv的深度学习框架排名结果,有人评论,他很遗憾Theano排名如此靠后,Theano是他的第一个框架。

深度学习的图景总是在不断变化,Theano是第一个被广泛采用的深度学习框架,由Yoshua Bengio领导的MILA创建和维护。但2017年9月,MILA宣布将在2018年终止Theano的开发和维护。Theano的离开不禁让人感慨,这也是第一个退出舞台的流行框架。

TensorFlow性能并非最优,为何如此受欢迎?粉丝团!

在过去的几年里,出现了不同的开源Python深度学习框架,TensorFlow就属于其中典型,由谷歌开发和支持,自然引发了很大的关注。

但需要指出,根据香港香港浸会大学褚晓文教授团队在2017年推出深度学习工具评测的研究报告《 基准评测 TensorFlow、Caffe、CNTK、MXNet、Torch 在三类流行深度神经网络上的表现(论文)》,TensorFlow的性能在有些时候表现并非最佳:

仅用一块GPU,FCN上Caffe、CNTK和Torch比MXNet和TensorFlow表现更好;CNN上MXNet表现出色,尤其是在大型网络时;而Caffe和CNTK在小型CNN上同样表现不俗;对于带LSTM的RNN,CNTK速度最快,比其他工具好上5到10倍。

通过将训练数据并行化,这些支持多GPU卡的深度学习工具,都有可观的吞吐量提升,同时收敛速度也提高了。多GPU卡环境下,CNTK平台在FCN和AlexNet上的可扩展性更好,而MXNet和Torch在CNN上相当出色。

这一结果,反而凸显出TensorFlow和谷歌强大的号召力,以及已经形成的生态圈的积极拉动影响。

在2017年初的这份报告中,褚晓文教授指出,硬件和软件同样重要,仅仅有硬件是不够的,没有好的软件,硬件的效能发挥不出来,这也是为什么今天有这么多深度学习软件,它们的性能有如此大的差异。

“Torch是很流行的软件,2002年就有了,那时候还没有深度学习。后来把深度学习做进去了。2014年就是Caffe,微软2015年开源了CNTK,接下来谷歌也开源了他们相应的开发平台。第三行是它的粉丝数量,目前(2017年9月)TensorFlow的粉丝团是最庞大的,有6万多个关注,相对来讲,CNTK、Caffe加起来还没有TensorFlow有影响力。最底下是开发平台的维护情况,随着硬件的提升,新的算法的提出,每个软件都是要不断的更新换代的,TensorFlow的更新是非常频繁的,基本上每一两个月就会有一个新的更新,代表着他们对软件平台的投入。”

而Keras,则是谷歌在2017年宣布,将Keras作为TensorFlow的高级API。这意味着Keras被包含在TensorFlow版本中及时更新。除了TensorFlow,Keras也可以使用Theano或者CNTK作为后端。

其他框架和公司合纵连横——中国框架何时才能上榜?

大家可以点击上面的链接仔细看TensorFlow、Caffe、PyTorch、MXNet等框架在各种应用场景下的性能。我们性能更好,但为什么用的人还不是最多?为了解决这个问题,开放神经网络交换(ONNX)格式的发布于2017年9月横空出世。

ONNX最初由微软和Facebook联合发布,后来亚马逊也加入进来,并在12月发布了V1版本。ONNX是一个表示深度学习模型的开放格式。它使用户可以更轻松地在不同框架之间转移模型。例如,它允许用户构建一个PyTorch模型,然后使用MXNet运行该模型来进行推理。

ONNX由微软、亚马逊和Facebook等公司共同发起,宣布支持ONNX的公司还有AMD、ARM、华为、 IBM、英特尔、Qualcomm等。谷歌不在这个阵营中并不令人惊讶。ONNX从一开始就支持Caffe2,Microsoft Cognitive Toolkit,MXNet和PyTorch,但与其他开源项目一样,社区也已经为TensorFlow添加了一个转换器。

在你争我抢,合纵连横之下,深度学习框架的流行趋势似乎很难预测。不过,中国的开源框架,什么时候才能在这样的排名上显露自己的名字呢?

原文发布于微信公众号 - 机器人网(robot_globalsources)

原文发表时间:2018-03-19

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏新智元

【开发者的2018】GAN、AutoML、统一框架、语音等十大趋势

来源:medium 作者:Alex Honchar 翻译:刘小芹 【新智元导读】本文从开发者的角度,总结了GAN、AutoML、语音识别、NLP等已经可以用...

37460
来自专栏人工智能

建立属于你的智能客服

本文首发于GitChat,原作者王晓雷,经作者同意授权转发。转载请联系作者或GitChat。 背景 很多人问,对话式交互系统就是语音交互么?当然不是。语音交互本...

32170
来自专栏机器之心

学界 | OpenAI竞争性自我对抗训练:简单环境下获得复杂的智能体

机器之心编译 选自:OpenAI 参与:蒋思源、刘晓坤 OpenAI 近日表示通过自我对抗训练的竞争性多智能体可以产生比环境本身复杂得多的行为。该研究基于 Do...

40550
来自专栏ATYUN订阅号

【指南】非技术人员的机器学习指南:如何轻松地进入机器学习

世界末日 首先,我们听说机器人正在做蓝领工作。 ? 然后,我们发现白领工作也不安全。 ? 在我们恐慌我们将要失业,我们发现这些机器人正在背后议论我们。 ? 可能...

38760
来自专栏AI科技大本营的专栏

AI 技术讲座精选:深度学习和人工智能技术是如何加速领域驱动设计的

【AI100 导读】你的代码库与企业模型是否匹配?深度学习和其他人工智能技术正在帮助领域驱动设计与组织业务目标进行匹配,这是如何做到的呢? ? 当下,人工智能...

36350
来自专栏机器人网

最受欢迎开源深度学习框架榜单:这个排名让人想起~~

Keras作者Fran?ois Chollet刚刚在Twitter贴出一张图片,是近三个月来arXiv上提到的深度学习开源框架排行: ? TensorFlow排...

1K70
来自专栏PPV课数据科学社区

【微报告】校园行(上)之社交大数据概念理解及应用案例

一、大数据 1、大数据时代 随着智能手机的普及,网民参与互联网产品和使用各种手机应用的程度越来越深,用户的行为、 位置、 甚至身体生理等每一点变化都成为了可被...

390120
来自专栏CDA数据分析师

你的歌单无聊吗?关于音乐和机器学习的数据分析

Spotify 是全球最大的正版流媒体音乐服务平台,深受全球用户的喜爱。那么你的歌单无聊吗?一位程序员小哥对自己的Spotify歌单进行了数据分析。 几天前,我...

23550
来自专栏量子位

像人一样脑补世界!DeepMind历时一年半搞出GQN,登上Science

21850
来自专栏机器学习AI算法工程

机器学习工程师31门课程(视频):从新手到专业

机器学习不仅仅是模型 产生这个问题的原因就是所有人都以为机器学习的模型就是机器学习本身,以为对那些个算法理解了就是机器学习的大牛了,但实际上完全不是这样的。 ...

415180

扫码关注云+社区

领取腾讯云代金券