推荐系统遇上深度学习(二)--FFM模型理论和实践

推荐系统遇上深度学习系列:

推荐系统遇上深度学习(一)--FM模型理论和实践

1、FFM理论

在CTR预估中,经常会遇到one-hot类型的变量,one-hot类型变量会导致严重的数据特征稀疏的情况,为了解决这一问题,在上一讲中,我们介绍了FM算法。这一讲我们介绍一种在FM基础上发展出来的算法-FFM(Field-aware Factorization Machine)。

FFM模型中引入了类别的概念,即field。还是拿上一讲中的数据来讲,先看下图:

在上面的广告点击案例中,“Day=26/11/15”、“Day=1/7/14”、“Day=19/2/15”这三个特征都是代表日期的,可以放到同一个field中。同理,Country也可以放到一个field中。简单来说,同一个categorical特征经过One-Hot编码生成的数值特征都可以放到同一个field,包括用户国籍,广告类型,日期等等。

在FFM中,每一维特征 xi,针对其它特征的每一种field fj,都会学习一个隐向量 v_i,fj。因此,隐向量不仅与特征相关,也与field相关。也就是说,“Day=26/11/15”这个特征与“Country”特征和“Ad_type"特征进行关联的时候使用不同的隐向量,这与“Country”和“Ad_type”的内在差异相符,也是FFM中“field-aware”的由来。

假设样本的 n个特征属于 f个field,那么FFM的二次项有 nf个隐向量。而在FM模型中,每一维特征的隐向量只有一个。FM可以看作FFM的特例,是把所有特征都归属到一个field时的FFM模型。根据FFM的field敏感特性,可以导出其模型方程。

可以看到,如果隐向量的长度为 k,那么FFM的二次参数有 nfk 个,远多于FM模型的 nk个。此外,由于隐向量与field相关,FFM二次项并不能够化简,其预测复杂度是 O(kn^2)。

下面以一个例子简单说明FFM的特征组合方式。输入记录如下:

这条记录可以编码成5个特征,其中“Genre=Comedy”和“Genre=Drama”属于同一个field,“Price”是数值型,不用One-Hot编码转换。为了方便说明FFM的样本格式,我们将所有的特征和对应的field映射成整数编号。

那么,FFM的组合特征有10项,如下图所示。

其中,红色是field编号,蓝色是特征编号。

2、FFM实现细节

这里讲得只是一种FFM的实现方式,并不是唯一的。

损失函数

FFM将问题定义为分类问题,使用的是logistic loss,同时加入了正则项

什么,这是logisitc loss?第一眼看到我是懵逼的,逻辑回归的损失函数我很熟悉啊,不是长这样的啊?其实是我目光太短浅了。逻辑回归其实是有两种表述方式的损失函数的,取决于你将类别定义为0和1还是1和-1。大家可以参考下下面的文章:https://www.cnblogs.com/ljygoodgoodstudydaydayup/p/6340129.html。当我们将类别设定为1和-1的时候,逻辑回归的损失函数就是上面的样子。

随机梯度下降

训练FFM使用的是随机梯度下降方法,即每次只选一条数据进行训练,这里还有必要补一补梯度下降的知识,梯度下降是有三种方式的,截图取自参考文献3:

总给人一种怪怪的感觉。batch为什么是全量的数据呢,哈哈。

3、tensorflow实现代码

本文代码的github地址: https://github.com/princewen/tensorflow_practice/tree/master/recommendation-FFM-Demo

这里我们只讲解一些细节,具体的代码大家可以去github上看:

生成数据 这里我没有找到合适的数据,就自己产生了一点数据,数据涉及20维特征,前十维特征是一个field,后十维是一个field:

def gen_data():
    labels = [-1,1]
    y = [np.random.choice(labels,1)[0] for _ in range(all_data_size)]
    x_field = [i // 10 for i in range(input_x_size)]
    x = np.random.randint(0,2,size=(all_data_size,input_x_size))
    return x,y,x_field

定义权重项 在ffm中,有三个权重项,首先是bias,然后是一维特征的权重,最后是交叉特征的权重:

def createTwoDimensionWeight(input_x_size,field_size,vector_dimension):
    weights = tf.truncated_normal([input_x_size,field_size,vector_dimension])

    tf_weights = tf.Variable(weights)

    return tf_weights

def createOneDimensionWeight(input_x_size):
    weights = tf.truncated_normal([input_x_size])
    tf_weights = tf.Variable(weights)
    return tf_weights

def createZeroDimensionWeight():
    weights = tf.truncated_normal([1])
    tf_weights = tf.Variable(weights)
    return tf_weights

计算估计值 估计值的计算这里不能项FM一样先将公式化简再来做,对于交叉特征,只能写两重循环,所以对于特别多的特征的情况下,真的计算要爆炸呀!

def inference(input_x,input_x_field,zeroWeights,oneDimWeights,thirdWeight):
    """计算回归模型输出的值"""

    secondValue = tf.reduce_sum(tf.multiply(oneDimWeights,input_x,name='secondValue'))

    firstTwoValue = tf.add(zeroWeights, secondValue, name="firstTwoValue")

    thirdValue = tf.Variable(0.0,dtype=tf.float32)
    input_shape = input_x_size

    for i in range(input_shape):
        featureIndex1 = I
        fieldIndex1 = int(input_x_field[I])
        for j in range(i+1,input_shape):
            featureIndex2 = j
            fieldIndex2 = int(input_x_field[j])
            vectorLeft = tf.convert_to_tensor([[featureIndex1,fieldIndex2,i] for i in range(vector_dimension)])
            weightLeft = tf.gather_nd(thirdWeight,vectorLeft)
            weightLeftAfterCut = tf.squeeze(weightLeft)

            vectorRight = tf.convert_to_tensor([[featureIndex2,fieldIndex1,i] for i in range(vector_dimension)])
            weightRight = tf.gather_nd(thirdWeight,vectorRight)
            weightRightAfterCut = tf.squeeze(weightRight)

            tempValue = tf.reduce_sum(tf.multiply(weightLeftAfterCut,weightRightAfterCut))

            indices2 = [I]
            indices3 = [j]

            xi = tf.squeeze(tf.gather_nd(input_x, indices2))
            xj = tf.squeeze(tf.gather_nd(input_x, indices3))

            product = tf.reduce_sum(tf.multiply(xi, xj))

            secondItemVal = tf.multiply(tempValue, product)

            tf.assign(thirdValue, tf.add(thirdValue, secondItemVal))

    return tf.add(firstTwoValue,thirdValue)

定义损失函数 损失函数我们就用逻辑回归损失函数来算,同时加入正则项:

lambda_w = tf.constant(0.001, name='lambda_w')
lambda_v = tf.constant(0.001, name='lambda_v')

zeroWeights = createZeroDimensionWeight()

oneDimWeights = createOneDimensionWeight(input_x_size)

thirdWeight = createTwoDimensionWeight(input_x_size,  # 创建二次项的权重变量
                                       field_size,
                                       vector_dimension)  # n * f * k

y_ = inference(input_x, trainx_field,zeroWeights,oneDimWeights,thirdWeight)

l2_norm = tf.reduce_sum(
    tf.add(
        tf.multiply(lambda_w, tf.pow(oneDimWeights, 2)),
        tf.reduce_sum(tf.multiply(lambda_v, tf.pow(thirdWeight, 2)),axis=[1,2])
    )
)

loss = tf.log(1 + tf.exp(input_y * y_)) + l2_norm

train_step = tf.train.GradientDescentOptimizer(learning_rate=lr).minimize(loss)

训练 接下来就是训练了,每次只用喂一个数据就好:

input_x_batch = trainx[t]
input_y_batch = trainy[t]
predict_loss,_, steps = sess.run([loss,train_step, global_step],
                         feed_dict={input_x: input_x_batch, input_y: input_y_batch})

跑的是相当的慢,我们来看看效果吧:

参考文章

1、https://tech.meituan.com/deep-understanding-of-ffm-principles-and-practices.html 2、https://www.cnblogs.com/ljygoodgoodstudydaydayup/p/6340129.html 3、https://www.cnblogs.com/pinard/p/5970503.html

推荐阅读:强化学习系列

实战深度强化学习DQN-理论和实践

DQN三大改进(一)-Double DQN

DQN三大改进(二)-Prioritised replay

DQN三大改进(三)-Dueling Network

深度强化学习-Policy Gradient基本实现

深度强化学习-Actor-Critic算法原理和实现

深度强化学习-DDPG算法原理和实现

对抗思想与强化学习的碰撞-SeqGAN模型原理和代码解析

有关作者:

石晓文,中国人民大学信息学院在读研究生,美团外卖算法实习生

简书ID:石晓文的学习日记(https://www.jianshu.com/u/c5df9e229a67)

天善社区:https://www.hellobi.com/u/58654/articles

腾讯云:https://cloud.tencent.com/developer/user/1622140

想了解更多? 那就赶紧来关注我们

原文发布于微信公众号 - 小小挖掘机(wAIsjwj)

原文发表时间:2018-04-12

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏ATYUN订阅号

【学术】在Google Sheet中创建深度神经网络

深度卷积神经网络并不像听起来的那样令人生畏。我将向你们展示我在Google Sheet中做的一个实现。复制它,你可以尝试一下,看看不同的因素如何影响模型的预测。...

31060
来自专栏大数据文摘

手把手 | 30行JavaScript代码,教你分分钟创建神经网络

18130
来自专栏程序生活

机器学习(十三)缺失值处理的处理方法总结

20120
来自专栏机器之心

教程 | 如何判断LSTM模型中的过拟合与欠拟合

选自MachineLearningMastery 作者:Jason Brownlee 机器之心编译 参与:Nurhachu Null、路雪 判断长短期记忆模型在...

1.6K100
来自专栏奇点大数据

Pytorch神器(5)

大家好,今天我们进一步学习Pytorch的用法之正向传播(FeedForward)网络的用法。

16130
来自专栏AI2ML人工智能to机器学习

矩有四子

在讨论一些方法的几何意义之前需要理解一下线性代数的一个基础知识,就是矩阵和它代表的空间的含义。

11430
来自专栏ATYUN订阅号

使用Python实现无监督学习

人工智能研究的负责人Yan Lecun说,非监督式的学习——教机器自己学习,而不用被明确告知他们做的每一件事是对还是错——是实现“真”AI的关键。

26650
来自专栏SnailTyan

ResNet论文翻译——中文版

Deep Residual Learning for Image Recognition 摘要 更深的神经网络更难训练。我们提出了一种残差学习框架来减轻网络训...

41170
来自专栏技术与生活

从一条曲线谈损失函数优化方法

找到生成最小值的一组参数的算法被称为优化算法。我们发现随着算法复杂度的增加,则算法倾向于更高效地逼近最小值。我们将在这篇文章中讨论以下算法:

15220
来自专栏PPV课数据科学社区

机器学习系列:(四)从线性回归到逻辑回归

从线性回归到逻辑回归 在第2章,线性回归里面,我们介绍了一元线性回归,多元线性回归和多项式回归。这些模型都是广义线性回归模型的具体形式,广义线性回归是一种灵活的...

55660

扫码关注云+社区

领取腾讯云代金券