前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >用Tensorflow实现卷积神经网络CNN

用Tensorflow实现卷积神经网络CNN

作者头像
海天一树
发布2018-04-17 11:21:35
9030
发布2018-04-17 11:21:35
举报
文章被收录于专栏:海天一树

一、数据准备

实验数据使用MNIST数据集。 MNIST 数据集已经是一个被”嚼烂”了的数据集, 很多教程都会对它”下手”, 几乎成为一个 “典范”。

在很多tensorflow教程中,用下面这一句下载mnist数据集:

代码语言:javascript
复制
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)  

但实际运行时根本无法通过网络下载,解决方案就是手工下载数据,然后直接导入使用。

下载地址:http://yann.lecun.com/exdb/mnist/ 4个文件,注意下载后不需要解压。

如果把上述下载的文件放在与运行的.py文件同一个目录下,那么导入数据的代码是这样的:

代码语言:javascript
复制
mnist = input_data.read_data_sets('./', one_hot=True)  

二、代码

代码语言:javascript
复制
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
# number 1 to 10 data
mnist = input_data.read_data_sets('./', one_hot=True)
def compute_accuracy(v_xs, v_ys):
    global prediction
    y_pre = sess.run(prediction, feed_dict={xs: v_xs, keep_prob: 1})
    correct_prediction = tf.equal(tf.argmax(y_pre,1), tf.argmax(v_ys,1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    result = sess.run(accuracy, feed_dict={xs: v_xs, ys: v_ys, keep_prob: 1})
    return result
# 产生随机变量,符合 normal 分布
# 传递 shape 就可以返回weight和bias的变量
def weight_variable(shape):
    initial = tf.truncated_normal(shape, stddev=0.1)    
    return tf.Variable(initial)                         
def bias_variable(shape):
    initial = tf.constant(0.1, shape=shape)
    return tf.Variable(initial)
# 定义2维的 convolutional 图层
def conv2d(x, W):
    # stride [1, x_movement, y_movement, 1]
    # Must have strides[0] = strides[3] = 1
    # strides 就是跨多大步抽取信息
    return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')     
# 定义 pooling 图层
def max_pool_2x2(x):
    # stride [1, x_movement, y_movement, 1]
    # 用pooling对付跨步大丢失信息问题
    return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME')        
# define placeholder for inputs to network
xs = tf.placeholder(tf.float32, [None, 784])        # 784=28x28
ys = tf.placeholder(tf.float32, [None, 10])
keep_prob = tf.placeholder(tf.float32)
x_image = tf.reshape(xs, [-1, 28, 28, 1])           # 最后一个1表示数据是黑白的
# print(x_image.shape)  # [n_samples, 28,28,1]
## 1. conv1 layer ##
#  把x_image的厚度1加厚变成了32
W_conv1 = weight_variable([5, 5, 1, 32])                # patch 5x5, in size 1, out size 32
b_conv1 = bias_variable([32])
# 构建第一个convolutional层,外面再加一个非线性化的处理relu
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)            # output size 28x28x32
# 经过pooling后,长宽缩小为14x14
h_pool1 = max_pool_2x2(h_conv1)                                     # output size 14x14x32
## 2. conv2 layer ##
# 把厚度32加厚变成了64
W_conv2 = weight_variable([5,5, 32, 64])                # patch 5x5, in size 32, out size 64
b_conv2 = bias_variable([64])
# 构建第二个convolutional层
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)            # output size 14x14x64
# 经过pooling后,长宽缩小为7x7
h_pool2 = max_pool_2x2(h_conv2)                                     # output size 7x7x64
## 3. func1 layer ##
# 飞的更高变成1024
W_fc1 = weight_variable([7*7*64, 1024])
b_fc1 = bias_variable([1024])
# [n_samples, 7, 7, 64] ->> [n_samples, 7*7*64]
# 把pooling后的结果变平
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
## 4. func2 layer ##
# 最后一层,输入1024,输出size 10,用 softmax 计算概率进行分类的处理
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
prediction = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
# the error between prediction and real data
cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction),
                                              reduction_indices=[1]))       # loss
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
sess = tf.Session()
# important step
sess.run(tf.global_variables_initializer())
for i in range(1000):
    batch_xs, batch_ys = mnist.train.next_batch(100)
    sess.run(train_step, feed_dict={xs: batch_xs, ys: batch_ys, keep_prob: 0.5})
    if i % 50 == 0:
        print(compute_accuracy(
            mnist.test.images, mnist.test.labels))

三、Github代码下载

下载

四、参考

http://v.youku.com/v_show/id_XMTYyMTUyMjc0OA==.html?spm=a2hzp.8253869.0.0

https://github.com/MorvanZhou/tutorials/tree/master/tensorflowTUT/tf18_CNN3

https://www.jianshu.com/p/e2f62043d02b

https://blog.csdn.net/i8088/article/details/79126150

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2018-04-08,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 海天一树 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 一、数据准备
  • 二、代码
  • 三、Github代码下载
  • 四、参考
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档