前馈神经网络和BP算法简单教程

吴立德老师亲自讲解前馈神经网络和BP算法,让初学者对基础更加了解,对以后网络的改建和创新打下基础,值得好好学习!希望让很多关注的朋友学习更多的基础知识,打下牢固的基石,也非常感谢您们对我们计算机视觉战队平台的关注与支持,再次谢谢您们!
视频内容

目标:本节将帮助读者对反向传播形成直观而专业的理解。反向传播是利用链式法则递归计算表达式的梯度的方法。理解反向传播过程及其精妙之处,对于理解、实现、设计和调试神经网络非常关键。

问题陈述:这节的核心问题是:给定函数

,其中x是输入数据的向量,需要计算函数f关于x的梯度,也就是

目标:之所以关注上述问题,是因为在神经网络中f对应的是损失函数(L),输入x里面包含训练数据和神经网络的权重。举个例子,损失函数可以是SVM的损失函数,输入则包含了训练数据(xi,yi),i=1,...,N、权重W和偏差b。注意训练集是给定的(在机器学习中通常都是这样),而权重是可以控制的变量。因此,即使能用反向传播计算输入数据

上的梯度,但在实践为了进行参数更新,通常也只计算参数(比如W,b)的梯度。然而

的梯度有时仍然是有用的:比如将神经网络所做的事情可视化便于直观理解的时候,就能用上。

使用链式法则计算复合表达式

现在考虑更复杂的包含多个函数的复合函数,比如

。虽然这个表达足够简单,可以直接微分,但是在此使用一种有助于读者直观理解反向传播的方法。将公式分成两部分:q=x+y和f=qz。在前面已经介绍过如何对这分开的两个公式进行计算,因为f是q和z相乘,所以:

又因为q是x加y,所以:

然而,并不需要关心中间量q的梯度,因为

没有用。相反,函数f关于x,y,z的梯度才是需要关注的。链式法则指出将这些梯度表达式链接起来的正确方式是相乘,比如

最后得到变量的梯度[dfdx, dfdy, dfdz],它们告诉我们函数f对于变量[x, y, z]的敏感程度。这是一个最简单的反向传播。一般会使用一个更简洁的表达符号,这样就不用写df了。这就是说,用dq来代替dfdq,且总是假设梯度是关于最终输出的。

这次计算可以被可视化为如下计算线路图像:



上图的真实值计算线路展示了计算的视觉化过程。前向传播从输入计算到输出(绿色),反向传播从尾部开始,根据链式法则递归地向前计算梯度(显示为红色),一直到网络的输入端。可以认为,梯度是从计算链路中回流。

反向传播的直观理解

反向传播是一个优美的局部过程。在整个计算线路图中,每个门单元都会得到一些输入并立即计算两个东西:1. 这个门的输出值,和2.其输出值关于输入值的局部梯度。门单元完成这两件事是完全独立的,它不需要知道计算线路中的其他细节。然而,一旦前向传播完毕,在反向传播的过程中,门单元门将最终获得整个网络的最终输出值在自己的输出值上的梯度。链式法则指出,门单元应该将回传的梯度乘以它对其的输入的局部梯度,从而得到整个网络的输出对该门单元的每个输入值的梯度。

这里对于每个输入的乘法操作是基于链式法则的。该操作让一个相对独立的门单元变成复杂计算线路中不可或缺的一部分,这个复杂计算线路可以是神经网络等。

模块化:Sigmoid例子

上面介绍的门是相对随意的。任何可微分的函数都可以看做门。可以将多个门组合成一个门,也可以根据需要将一个函数分拆成多个门。现在看看一个表达式:

在后面可以看到,这个表达式描述了一个含输入x和权重w的2维的神经元,该神经元使用了sigmoid激活函数。但是现在只是看做是一个简单的输入为x和w,输出为一个数字的函数。这个函数是由多个门组成的。除了上文介绍的加法门,乘法门,取最大值门,还有下面这4种:

其中,函数

使用对输入值进行了常量c的平移,

将输入值扩大了常量a倍。它们是加法和乘法的特例,但是这里将其看做一元门单元,因为确实需要计算常量c,a的梯度。整个计算线路如下:


使用sigmoid激活函数的2维神经元的例子。输入是[x0, x1],可学习的权重是[w0, w1, w2]。一会儿会看见,这个神经元对输入数据做点积运算,然后其激活数据被sigmoid函数挤压到0到1之间。


在上面的例子中可以看见一个函数操作的长链条,链条上的门都对w和x的点积结果进行操作。该函数被称为sigmoid函数

。sigmoid函数关于其输入的求导是可以简化的(使用了在分子上先加后减1的技巧):

可以看到梯度计算简单了很多。举个例子,sigmoid表达式输入为1.0,则在前向传播中计算出输出为0.73。

根据上面的公式,局部梯度为(1-0.73)*0.73~=0.2,和之前的计算流程比起来,现在的计算使用一个单独的简单表达式即可。因此,在实际的应用中将这些操作装进一个单独的门单元中将会非常有用。

实现提示:分段反向传播。上面的代码展示了在实际操作中,为了使反向传播过程更加简洁,把向前传播分成不同的阶段将是很有帮助的。比如我们创建了一个中间变量dot,它装着w和x的点乘结果。在反向传播的时,就可以(反向地)计算出装着w和x等的梯度的对应的变量(比如ddot,dx和dw)。

本节的要点就是展示反向传播的细节过程,以及前向传播过程中,哪些函数可以被组合成门,从而可以进行简化。知道表达式中哪部分的局部梯度计算比较简洁非常有用,这样他们可以“链”在一起,让代码量更少,效率更高。

反向传播实践:分段计算

看另一个例子。假设有如下函数:

首先要说的是,这个函数完全没用,读者是不会用到它来进行梯度计算的,这里只是用来作为实践反向传播的一个例子,需要强调的是,如果对x或y进行微分运算,运算结束后会得到一个巨大而复杂的表达式。然而做如此复杂的运算实际上并无必要,因为我们不需要一个明确的函数来计算梯度,只需知道如何使用反向传播计算梯度即可。

到了表达式的最后,就完成了前向传播。注意在构建代码s时创建了多个中间变量,每个都是比较简单的表达式,它们计算局部梯度的方法是已知的。这样计算反向传播就简单了:我们对前向传播时产生每个变量(sigy, num, sigx, xpy, xpysqr, den, invden)进行回传。我们会有同样数量的变量,但是都以d开头,用来存储对应变量的梯度。注意在反向传播的每一小块中都将包含了表达式的局部梯度,然后根据使用链式法则乘以上游梯度。

需要注意的一些东西:

对前向传播变量进行缓存:在计算反向传播时,前向传播过程中得到的一些中间变量非常有用。在实际操作中,最好代码实现对于这些中间变量的缓存,这样在反向传播的时候也能用上它们。如果这样做过于困难,也可以(但是浪费计算资源)重新计算它们。

在不同分支的梯度要相加:如果变量x,y在前向传播的表达式中出现多次,那么进行反向传播的时候就要非常小心,使用+=而不是=来累计这些变量的梯度(不然就会造成覆写)。这是遵循了在微积分中的多元链式法则,该法则指出如果变量在线路中分支走向不同的部分,那么梯度在回传的时候,就应该进行累加。

用向量化操作计算梯度

上述内容考虑的都是单个变量情况,但是所有概念都适用于矩阵和向量操作。然而,在操作的时候要注意关注维度和转置操作。

矩阵相乘的梯度:可能最有技巧的操作是矩阵相乘(也适用于矩阵和向量,向量和向量相乘)的乘法操作。

使用小而具体的例子:有些读者可能觉得向量化操作的梯度计算比较困难,建议是写出一个很小很明确的向量化例子,在纸上演算梯度,然后对其一般化,得到一个高效的向量化操作形式。

小结

  • 对梯度的含义有了直观理解,知道了梯度是如何在网络中反向传播的,知道了它们是如何与网络的不同部分通信并控制其升高或者降低,并使得最终输出值更高的。
  • 讨论了分段计算在反向传播的实现中的重要性。应该将函数分成不同的模块,这样计算局部梯度相对容易,然后基于链式法则将其“链”起来。重要的是,不需要把这些表达式写在纸上然后演算它的完整求导公式,因为实际上并不需要关于输入变量的梯度的数学公式。只需要将表达式分成不同的可以求导的模块(模块可以是矩阵向量的乘法操作,或者取最大值操作,或者加法操作等),然后在反向传播中一步一步地计算梯度。

原文发布于微信公众号 - 计算机视觉战队(ComputerVisionGzq)

原文发表时间:2017-06-02

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏用户2442861的专栏

深度学习概述:从感知机到深度网络

http://www.cnblogs.com/xiaowanyer/p/3701944.html

851
来自专栏决胜机器学习

循环神经网络(一) ——循环神经网络模型与反向传播算法

循环神经网络(一) ——循环神经网络模型与反向传播算法 (原创内容,转载请注明来源,谢谢) 一、概述 这一章开始讲循环神经网络(RNN,Recurrent Ne...

3795
来自专栏AI科技大本营的专栏

一文概览主要语义分割网络:FCN,SegNet,U-Net...

图像的语义分割是将输入图像中的每个像素分配一个语义类别,以得到像素化的密集分类。虽然自 2007 年以来,语义分割/场景解析一直是计算机视觉社区的一部分,但与计...

4312
来自专栏数据科学与人工智能

【深度学习】深度学习概述:从感知机到深度网络

近些年来,人工智能领域又活跃起来,除了传统了学术圈外,Google、Microsoft、facebook等工业界优秀企业也纷纷成立相关研究团队,并取得了很多令人...

32810
来自专栏IT派

对数几率回归 —— Logistic Regression

首先,在引入LR(Logistic Regression)模型之前,非常重要的一个概念是,该模型在设计之初是用来解决0/1二分类问题,虽然它的名字中有回归二字,...

1292
来自专栏机器学习算法与Python学习

SoftMax回归详解

Contents 1 关键词 2 引言 3 代价函数 4 softmax回归模型参数化的特点 5 权重衰减 6 softmax与logistics回归的关系 1...

4058
来自专栏AI研习社

SSD(单次多盒检测)用于实时物体检测

卷积神经网络在检测图像中的物体时优于其他神经网络结构。很快,研究人员改进了 CNN 来进行对象定位与检测,并称这种结构为 R-CNN(Region-CNN)。R...

1092
来自专栏Spark学习技巧

读懂Word2Vec之Skip-Gram

本教程将介绍Word2Vec的skip gram神经网络体系结构。我这篇文章的目的是跳过对Word2Vec的一般的介绍和抽象见解,并深入了解其细节。具体来说,我...

3627
来自专栏Pytorch实践

Pytorch实现LSTM时间序列预测

摘要:本文主要基于Pytorch深度学习框架,实现LSTM神经网络模型,用于时间序列的预测。 开发环境说明: Python 35 Pytorch 0.2 CP...

1.3K7
来自专栏大数据挖掘DT机器学习

该怎么检测异常值?

原文作者: Jacob Joseph 原文链接:https://blog.clevertap.com/how-to-detect-outliers-u...

4919

扫码关注云+社区

领取腾讯云代金券