【学习】网站数据分析:网站用户忠诚度分析

忠诚用户不仅能为网站创造持续的价值,同时也是网站品牌口碑推广的重要渠道,所以目前网站对忠诚用户愈加重视。可能很多网站或者网站分析工具对用户做了“新用户”和“回访用户”的划分,但是单单区分新老用户是不够了,我们需要更加完善的指标来衡量网站用户的忠诚度。

用户忠诚度(Loyalty),指的是用户出于对企业或品牌的偏好而经常性重复购买的程度。对于网站来说,用户忠诚度则是用户出于对网站的功能或偏好而经常访问该网站的行为。根据客户忠诚理论,忠诚度可以由以下4个指标来度量:

  • 重复购买意向(Repurchase Intention):购买以前购买过的类型产品的意愿;
  • 交叉购买意向(Cross-buying Intention):购买以前为购买的产品类型或扩展服务的意愿;
  • 客户推荐意向(Customer Reference Intention):向其他潜在客户推荐,传递品牌口碑的意愿;
  • 价格忍耐力(Price Tolerance):客户愿意支付的最高价格。

量化网站的用户忠诚度

  以上的4个指标对于电子商务网站而言,可能还有适用性,但对于大多数网站是不合适的,所以为了让分析具有普遍的适用性,同时为了满足所有的指标都可以量化(上面的客户推荐意向比较难以量化),以便进行定量分析的要求,这里可以选取Google Analytics中对用户忠诚度的4个度量指标:Repeated Times、Recency、Length of Visit、Depth of Visit,即用户访问频率、最近访问时间、平均停留时间、平均访问页面数,这些指标可以直接从网站的点击流数据中计算得到,对所有的网站都适用,下面看一下这些指标的定义及如何计算得到(一些网站度量的相关定义请参考——网站分析的基本度量):

  • 访问频率:用户在一段时间内访问网站的次数,即每个用户Visits的个数;
  • 最近访问时间:用户最近访问网站的时间,因为这个指标是个时间点的概念,所以为了便于度量,一般取用户最近访问时间距当前的天数。
  • 平均停留时间:用户一段时间内每次访问的平均停留时间,即每个用户Time on Site的和/Visits的个数;
  • 平均访问页面数:用户一段时间内每次访问的平均浏览页面数,即每个用户Page Views的和/ Visits的个数。

  统计数据的时间区间也是根据网站的特征来定的,如果网站的信息更新较快,用户访问较为频繁,那么可以适当选取较短的时间段,这样数据变化上的灵敏度会高些;反之,则选择稍长的时间段,这样用户的数据更为丰富,指标的分析结果也会更加准确有效。

用户忠诚度的展示和比较

  上面的4个指标均可以被量化统计得到,单一的指标也是没有意义的,我们需要通过比较来找出哪些是忠诚用户,哪些是流失用户,可以先对指标进行一些处理,以便使它们之间更具可比性,可以参考之前的文章——数据的标准化),这里我采用的是min-max标准化的方法,首先将所有指标的数值全部转换到[0,1]区间,再进行倍数放大,比如使用10分制进行评分,则可以乘10,数据就全部分布在[0,10]区间内了,如下图:

——表中的数据只是简单的举例,实际情况需要根据每个指标的最大最小值进行计算

  根据上表的数据,我们已经将所有指标统一到了同一个评分区间,那么就可以使用雷达图对用户的忠诚度进行展示。用雷达图展示有以下几个优点:

  • 可以完整地显示所有评价指标;
  • 显示用户在各指标评分中的偏向性;
  • 可以简单分析用户忠诚度的综合评分,即图形围成的面积(假设四个指标的权重相等,若重要程度存在明显差异,则不能用的面积来衡量);
  • 可以用于用户间忠诚度的比较。

  下面是根据上表绘制的雷达图示例: <ignore_js_op>

用户忠诚度分析的意义

  那么基于这个展示的结果我们能做些什么呢?其实对于任何网站而言,有两个方向是一致的:保留忠诚用户减少流失用户。基于上面的用户忠诚度评价体系扩展开来就是:

  • 分析忠诚用户的行为特征,努力满足他们的需求,提高他们的满意度;
  • 从最近访问时间的指标数据机用户忠诚度变化趋势中发现一些可能正在流失的用户,分析他们流失的可能原因,并试图挽留流失用户;
  • 比较忠诚用户和流失用户在指标数值上的差异,寻找哪些指标的差距导致了用户忠诚度的降低,优化网站在这些方面的表现。

  所以,我这里使用的是基于用户访问频率、最近访问时间、平均停留时间、平均访问页面数这4个指标来评价网站用户的忠诚度,并用雷达图进行展示和比较,也许你可以根据自己网站的特征找到更加适合的指标和展示方式,而最终需要做的是能够更加精确地找到网站的忠实用户,并努力留住他们。

本文分享自微信公众号 - PPV课数据科学社区(ppvke123)

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2014-06-16

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏AI科技大本营的专栏

Google VS 亚马逊 VS 微软,机器学习服务选谁好?

译者 | reason_W 编辑 | Just 对大多数企业来说,机器学习听起来就像航天技术一样,属于花费不菲又“高大上”的技术。如果你是想构建一个 Netfl...

34350
来自专栏PPV课数据科学社区

哪一种编程语言适合人工智能?——Python在人工智能中的作用

? 谷歌的AI击败了一位围棋大师,是一种衡量人工智能突然的快速发展的方式,也揭示了这些技术如何发展而来和将来可以如何发展。 人工智能是一种未来性的技术,目前正...

45860
来自专栏腾讯云人工智能

详解腾讯智能钛机器学习 TI-ML(文末有惊喜)

腾讯研究院《2017全球人工智能人才白皮书》报告中提到,现全球AI领域人才约30万,而市场对人才的需求在百万量级,每年从各大高校毕业的学生约2万人,远远不能满足...

2.3K870
来自专栏IT派

谷歌文本转语音系统更新 可选择学习模型

据外媒报道,近日,谷歌更新了其云端文本转语音(Cloud Text-to-Speech)API。

21500
来自专栏悦思悦读

如何以Python为工具走入数据科学之门

本次分享第【1】部分:什么是数据科学。 本次分享第【2】部分:如何从小白成长为数据科学家。 分享主题:Data Science学习分享会 分享时间:2016年4...

369130
来自专栏技术翻译

数据分析师需要掌握的技能

1.第一个是Excel。这看起来很简单,但实际上并非如此。Excel不仅可以执行简单的二维表,复杂的嵌套表,还可以创建折线图,柱形图,条形图,面积图,饼图,雷达...

65320
来自专栏PPV课数据科学社区

不要担心没数据!史上最全数据集网站汇总

本文将为您提供一个网站 资源列表,从中你可以使用数据来完成你自己的数据项目,甚至创造你自己的产品。

54250
来自专栏数据派THU

福利 | 放送AI华人库试用名额!专项代码找到领域专家

如今,人工智能领域发展如火如荼,国家也高度重视人工智能的发展,自然基金委成立了人工智能的专项代码F06,我们做了一个很有意思的尝试,首先通过在相关领域发表的论文...

15310
来自专栏机器学习AI算法工程

数据挖掘工作的几点体会

1、挖掘工具主要分商业数据产品和集成数据挖掘产品两类:商业数据挖掘产品具有代表性的SPSS Clementine,SAS Enterprise Miner,IB...

38660
来自专栏AI科技评论

开发 | Twitter客户支持数据集公布:来自大企业的超百万条推文与回复

AI科技评论消息,近日,Kaggle平台上公布了Twitter客户支持数据集,这个数据集包括来自大企业的超百万条推文与回复,大家可以利用这个数据集做很多有意思的...

45850

扫码关注云+社区

领取腾讯云代金券