数据面试官告诉你 答案不是结果,方法才是

我在面试数据分析师的时候,必然会问他们一个问题:“假如我是一家知名电商的CEO,而今天是星期一早上9 点钟,请你给我提供三个数据指标向我证明在过去的一周里,企业运营得一切正常,可以让我踏实下来。你认为,会是哪三个指标呢?”

绝大多数应聘者对这个问题的回答比较一致:第一个是流量;第二个是交易量;第三个是其他,这个其他包括转化率、交易额等。

当他们这样回答完后,我会反问他们:“刚刚我问的问题,你真的听清楚了吗?”这时候,有人会回答:“我听清楚了,答案就是这三个数据。”往往这个时候,我会提醒应聘者说:“请注意,我要的数据是给CEO看的,而且还是顶级电商的CEO,而且时间轴还是周敏感数据。”面试进行到这一环节,我发现大部分面试者根本听不懂“CEO”的含义。事实上,既然是CEO,就意味着他是公司里的最高领导层,那么给他看的东西明显要与其他人不同。在这个例子中,我们会发现绝大多数应聘者很少会换位思考。也就是说,事实上,他们都是从自己的角度来思考,而不是以一个数据分析师、一个要给CEO汇报三个数据指标的分析师的身份来思考问题。

那么,什么是以数据分析师的身份来思考问题呢?通常来说,在我问出问题时,作为数据分析师的你首先要想的是CEO 会关注什么数据,是长期的,还是短期的?是风险最大的,还是风险一般的?或者是最近发生了什么事情?以及给CEO 提供的数据要有什么注意事项,等等。

所以,我要再问问应聘者:“当你坐在面试桌对面给我答案的时候,有没有想过在星期一的早上,这家知名电商的CEO 真正想看的是什么?”再想想这个问题,你到底有没有真正听清楚“CEO”、“知名电商”、“周敏感数据”这些关键词?

CEO 要的是“踏实”——他听完了就可以安心地吃早饭了。

在面试时,如果面试者不对这几个问题进行询问就贸然回答的话,满分是10分,我只会给5 分。因为这个问题里面本身就有很多问题,比如,什么是踏实?踏实是一个概念,你不问清楚“踏实”的含义,就给我三个指标,无论如何都是错的。

在正常情况下,首先不要急于回答我提出的问题,而是先问清楚什么是踏实,切勿自己先做假定。以下,我们可以假定一个相对理想的面试场景。

你反问:“什么是踏实的状况?”

我回答道:“最近这家电商和另一家电商在打价格战,而它最近又新推出了图书类目,那么CEO 自然最关注的是这些图书的业务做得好不好。”

你再问:“什么是好?是否基于每天来买书的新增用户和原有用户购书的数量多少?而且,CEO 是希望更多地用书来吸引新用户,还是想通过图书业务的推广让现有的用户进行交叉购买行为?”

在这些思考结束之前,你绝对不能给出指标。因为,在没有解决一个问题的内涵之前,任意给出的一个指标,必错无疑。所以,我才会问应聘者到底听清楚问题没有。

在我做面试官的经历中,很多看似有经验的数据分析师,往往在我提出的问题还没有解释清楚时就抢着作答。绝大多数人在思考不到一秒钟的时间里就给出了答案,而这一秒钟的答案,我可以确定他们根本没有听清楚我的问题。

通常这个时候,我会再给他们一次机会,问他们:“刚才你给我的这个答案,如果我给你满分10 分,你会给自己打几分?”而此时,大部分人只会打6~7 分。

当应聘者给自己打7 分时,我会反问:“另外3 分丢的原因是什么?”他开始反思,说自己刚才给的可能并不是CEO 想要的指标,因为他对这家电商的近况不是很了解……

接下来,当我再反问:“刚才我的问题是‘假如我是一家知名电商的CEO,今天是星期一早上9 点钟,你给我三个数据指标向我证明在过去的一周里,企业运营得一切正常’,你听清楚了吗?如果你确认自己清楚了,能请你再给我一次答案吗?”

这时候,聪明的人不会再用一秒钟就给我答案了,而是重新思考,开始问问题,再给出答案。这时候的答案,当然会比第一个答案要好得多。最后,当我再问他:“现在,10 分满分你给自己打多少分?”此时,他们自己给出的分值通常都会高一些。至此,我的面试也就结束了。

事实上,关于这个问题,我根本就不关注打分的结果。当然,如果评价是10分,那就不用面试了,因为在没有仔细考虑过答案的时候就自信满满地回答,这种人必然无法承担做数据分析师的责任。虽然,自信是对的,但是思考更重要。作为一名数据分析师如果你不把自己的分析与当下结合,是没法进步的。

有趣的是,当我把这个问题贴在网上时,还是会有很多人追问我答案是什么。CEO 关心的到底是哪三个数据。这时候,我真的很想说,答案不是结果,方法才是

本文分享自微信公众号 - PPV课数据科学社区(ppvke123)

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2014-09-17

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏CDA数据分析师

数据分析从哪里开始入门学习,可以推荐的书有哪些?

数据行业在迅速的发展,几乎每天都会出现新的技术和方法。因此,想要跟上这个行业的步伐是有挑战性的。之前CDA数据分析师曾列出了15位在科技和数据科学领域最具影响力...

44650
来自专栏Crossin的编程教室

想用 Python 做数据分析?先玩玩这个再说

数据分析是 Python 的一大应用领域。据我所知,本教室的读者中有不少学习 Python 就是为了在工作中能用它分析数据。这其中,又有相当一部分人是涉及金融相...

69970
来自专栏数据冰山

灰姑娘战白富美:M.A.C如何艳压Dior

比如,你是一朵17岁的女高中生,春节后刚刚从北京转学到深圳,进入一个全新的班集体。你要怎么做,才能在暑假前变身全班最受欢迎的女生,有闺蜜、有蓝颜、有人追? 20...

56150
来自专栏ThoughtWorks

数字化平台中的客户触点技术

什么是客户触点技术 ? 图1 企业的线上线下多样化触点 随着科技的发展,客户与企业的互动过程中产生了线上线下非常多样化的触点。图1展示了一个啤酒企业在客户生命周...

50480
来自专栏CDA数据分析师

如何区分数据科学家、数据工程师、统计学家和软件工程师

谈到数据科学家、数据工程师、软件工程师和统计学家之间的区别,这可能会令人感到困惑。虽然都与数据有关,但他们的工作内容却存在着根本性差异。

38890
来自专栏机器人网

资本寒冬来了,消费级机器人迎来降价狂潮?

近日,某机器人品牌创始人曾表示,他们即将推出桌面级机器人产品,从数百元到千元划分出不同价位段。此前,他们的一代产品已于今年面世,是早期流行的“平板+底轮”形态。...

30570
来自专栏机器人网

常见的大数据术语表(中英对照简版)

大数据的出现带来了许多新的术语,但这些术语往往比较难以理解。因此,我们通过本文给出一个常用的大数据术语表,抛砖引玉,供大家深入了解。其中部分定义参考了相应的博客...

43670
来自专栏机器人网

如何赋予智能机器人道德能力?

打造具备道德自主能力人工智能装置的人该负什么样的责任?我们该如何透过有责任感的方式,为机器人添加道德能力?研究人员将为这些链接机器人与人工智能工程、巨量数据分析...

36070
来自专栏机器人网

如何赋予智能机器人道德能力?

打造具备道德自主能力人工智能装置的人该负什么样的责任?我们该如何透过有责任感的方式,为机器人添加道德能力?研究人员将为这些链接机器人与人工智能工程、巨量数据分析...

36380
来自专栏C语言及其他语言

国内数据分析“七宗罪”

来源:搜狐科技 每一个做过调研的人,都会惊讶于中美两国在大数据分析理念和客户心态上的巨大差别。   “企业数据分析,中美在理念方面相差2-3年,而在实际执行层...

38880

扫码关注云+社区

领取腾讯云代金券

年度创作总结 领取年终奖励