【学习】使用hadoop进行大规模数据的全局排序

1. Hellow hadoop~~! Hadoop(某人儿子的一只虚拟大象的名字)是一个复杂到极致,又简单到极致的东西。 说它复杂,是因为一个hadoop集群往往有几十台甚至成百上千台low cost的计算机组成,你运行的每一个任务都要在这些计算机上做任务的分发,执行中间数据排序以及最后的汇总,期间还包含节点发现,任务的重试,故障节点替换等等等等的维护以及异常情况处理。谁叫hadoop集群往往都是由一些平民计算机组成,没事儿罢个工什么的,实在是再寻常不过的事情。 而说其简单,则是因为,上面说到的那些,你通通不用管,你所需要做的,就是写一个程序,当然也可以是脚本,从标准输入读入一条数据,处理完之后,把结果输出到标准输出。 现在,或许你就明白了,hadoop就是一个计算模型。一个分布式的计算模型。 1.1Map和reduce 天下大事,分久必合、合久必分。 所谓分布式计算,就是把一大堆用于计算的数据材料切了,扔到多个锅里面,该焯水的焯水,该油炸的油炸。然后都准备的差不多了,按着一定的先后顺序,比如不好熟的先放,好熟的后放什么的,一块下锅炒成一盘菜出来,端出来上桌。 前面的步骤,就是map,分发。Map的作用就是把输入数据打散,做简单的处理,输出。而hadoop则要先将中间数据排序,这个称为shuffle,然后由reduce把中间数据合并到一起。将最终结果输出。 举个简单的例子:公安局要根据数据库内身份证号获得全国每个地市人口数情况(好吧,这个应该是统计局做的),这个任务落到你的头上了,你应该先把所有的身份证号导出到文件中,每行一个,然后把这些文件交给map。Map中的要做的就是截取身份证号的前面六位,把这六位数字直接输出。然后hadoop会把这些身份证号的前六位排序,把相同的数据都排到一起,交给reduce,reduce判断每次输入的号码是否与上一个处理的相同,相同则累加,不同则把之前的号码,和统计的数值输出。这样,你就获得了各地市的人口数统计。 下面这个图就是map和reduce处理的图示:

上图是MapReduce的数据处理视图。分为map,shuffle,reduce三个部分。各map任务读入切分后的大规模数据进行处理并将数据作为一系列key:value对输出,输出的中间数据按照定义的方式通过shuffle程序分发到相应的reduce任务。Shuffle程序还会按照定义的方式对发送到一个reduce任务的数据进行排序。Reduce进行最后的数据处理。 MapReduce计算框架适用于超大规模的数据(100TB量级)且各数据之间相关性较低的情况。 1.2HDFS

之前,或许你听说过NTFS,VFS,NFS等等等等,没错,HDFS就是hadoop file system。 为什么需要一种专门的文件系统呢? 这是因为hadoop使用过网络松散(说其松散,是因为hadoop集群中的任意一个计算机故障了或是不相干了,都不会对集群造成影响)的组合到一起的。多个计算机需要一个统一的文件访问方式。也就是根据一个路径,不同的计算机可以定位同一个文件。 HDFS就是这样一种分布式文件系统,提供了较好的容错功能和扩展性。 1.3节点与槽位

Hadoop集群是由很多low cost的计算机组成的,这些计算机被称为节点。组成hadoop的计算机通常都是全功能的,没有特别的专门用于计算和存储的部分。 这样带来的好处是明显的,因为特别大的硬盘和特别快的cpu,总是意味着难以接受的价格。而且这样一个配置“特别的”节点计算机挂掉了,找个他的替身将是很困难的事情。 计算节点和存储节点统一的另一个好处是,任务在计算过程中产生的文件,可以直接放在本机的存储节点上,减少网络带宽占用和延迟。 在衡量hadoop的map和reduce的处理能力的时候通常都是以槽位为单位的。槽位就是集群内每个计算机的cpu并发数(cpu数*核心数*超线程数)的总和。每个任务都会安排在一个槽位内允许,安排不到槽位的任务则会等待。 2.1应用hadoop进行大规模数据全局排序的方法

使用hadoop进行大量的数据排序排序最直观的方法是把文件所有内容给map之后,map不做任何处理,直接输出给一个reduce,利用hadoop的自己的shuffle机制,对所有数据进行排序,而后由reduce直接输出。 然而这样的方法跟单机毫无差别,完全无法用到多机分布式计算的便利。因此这种方法是不行的。 利用hadoop分而治之的计算模型,可以参照快速排序的思想。在这里我们先简单回忆一下快速排序。快速排序基本步骤就是需要现在所有数据中选取一个作为支点。然后将大于这个支点的放在一边,小于这个支点的放在另一边。 设想如果我们有N个支点(这里可以称为标尺),就可以把所有的数据分成N+1个part,将这N+1个part丢给reduce,由hadoop自动排序,最后输出N+1个内部有序的文件,再把这N+1个文件首尾相连合并成一个文件,收工。 由此我们可以归纳出这样一个用hadoop对大量数据排序的步骤:

1)对待排序数据进行抽样; 2)对抽样数据进行排序,产生标尺; 3)Map对输入的每条数据计算其处于哪两个标尺之间;将数据发给对应区间ID的reduce 4)Reduce将获得数据直接输出。 这里使用对一组url进行排序来作为例子:

这里还有一点小问题要处理:如何将数据发给一个指定ID的reduce?hadoop提供了多种分区算法。这些算法根据map输出的数据的key来确定此数据应该发给哪个reduce(reduce的排序也依赖key)。因此,如果需要将数据发给某个reduce,只要在输出数据的同时,提供一个key(在上面这个例子中就是reduce的ID+url),数据就该去哪儿去哪儿了。 2.2注意事项

1)标尺的抽取应该尽可能的均匀,这与快速排序很多变种算法均是强调支点的选取是一致的。 2)HDFS是一种读写性能很不对称的文件系统。应该尽可能的利用其读性能很强的特点。减少对写文件和shuffle操作的依赖。举例来说,当需要根据数据的统计情况来决定对数据的处理的时候。将统计和数据处理分成两轮map-reduce比将统计信息合并和数据处理都放到一个reduce中要快速的多。 3. 总结

Hadoop实际是一种以数据为驱动的计算模型,结合MapReduce和HDFS,将任务运行在数据存放的计算节点上,充分利用了计算节点的存储和计算资源,同时也大大节省了网络传输数据的开销。 Hadoop提供了简便利用集群进行并行计算的平台。各种可以隔离数据集之间相关性的运算模型都能够在Hadoop上被良好应用。之后会有更多的利用Hadoop实现的大规模数据基础计算方法的介绍。

原文发布于微信公众号 - PPV课数据科学社区(ppvke123)

原文发表时间:2015-03-03

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏人工智能LeadAI

PyTorch实现自由的数据读取

很多前人曾说过,深度学习好比炼丹,框架就是丹炉,网络结构及算法就是单方,而数据集则是原材料,为了能够炼好丹,首先需要一个使用称手的丹炉,同时也要有好的单方和原材...

6607
来自专栏数据分析

[数据清洗]-Pandas 清洗“脏”数据(一)

概要 准备工作 检查数据 处理缺失数据 添加默认值 删除不完整的行 删除不完整的列 规范化数据类型 必要的转换 ...

1K7
来自专栏Spark学习技巧

干货:基于Spark Mllib的SparkNLP库。

引言 这是来自John Snow Labs工程团队的社区博客和工作,解释了他们对开源Apache Spark自然语言处理(NLP)库的贡献。 Apache Sp...

2748
来自专栏恰童鞋骚年

OOAD利器之UML基础

UML:Unified Modeling Language,即统一建模语言,简单地说就是一种有特殊用处的语言。本文是我初步学习UML的学习笔记,对于我们菜鸟码农...

913
来自专栏Python小屋

Python使用pandas读取Excel文件多个WorkSheet的数据并绘制柱状图和热力图

问题描述:在当前文件夹中有一个存放同一门课程两个班级同学成绩的Excel文件“学生成绩.xlsx”,每个工作表中存放一个班级的成绩。编写程序,使用pandas读...

9463
来自专栏CSDN技术头条

使用hadoop进行大规模数据的全局排序

1. Hellow hadoop~~! Hadoop(某人儿子的一只虚拟大象的名字)是一个复杂到极致,又简单到极致的东西。 说它复杂,是因为一个hadoop...

3475
来自专栏数说工作室

换个姿势学量化!|【量化小讲堂】使用python计算各类移动平均线

作者:邢不行 原文链接: http://bbs.pinggu.org/thread-3631776-1-1.html (本文已获作者授权转载,如需转载请与原作者...

46411
来自专栏数据结构与算法

1010 过河卒

1010 过河卒 2002年NOIP全国联赛普及组  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题解  查看运行结果...

2865
来自专栏Kirito的技术分享

JAVA拾遗 — JMH与8个代码陷阱

JMH (http://openjdk.java.net/projects/code-tools/jmh/) 是 Java Microbenchmark Har...

1944
来自专栏架构师小秘圈

MapReduce极简教程

一个有趣的例子 你想数出一摞牌中有多少张黑桃。直观方式是一张一张检查并且数出有多少张是黑桃? ? MapReduce方法则是: 给在座的所有玩家中分配这摞牌 ...

4098

扫码关注云+社区

领取腾讯云代金券