【学习】天龙八部:8步从Python白板到专家

如果你想做一个数据科学家,或者作为一个数据科学家你想扩展自己的工具和知识库,那么,你来对地方了。

这篇文章的目的,是给刚开始使用Python进行数据分析的人,指明一条全面的Python学习路径。这条路径提供了用Python进行数据分析的必要步骤的一个全面概述。如果你已经有了一些基础,或者不需要所有的内容,可以随意调整学习路径以适合自己,并让我们知道你是怎么改动的。

0热身运动

在开始学习之前,第一个需要回答的问题是

推荐这个30分钟的录像,它是DataRobot创始人Jeremy在2014年Python社区大会(PyCon)上的讲话,它能够让你了解Python有多有用。小编注:建议在Wi-Fi连接下观看。

1、设置你的计算机

既然你已经下定了决心,是时候设置你的计算机了。最简单的方法是直接从Continuum.io下载Anaconda,它含有你Python生涯中需要的绝大多数好东东 。

https://store.continuum.io/cshop/anaconda/

这样做的主要缺点是,即便有一些底层包已经有更新版本的时候,你还是需要等待Continuum更新Anaconda中的包。如果你只是刚刚开始,那这一点就不算是个问题。如果在安装时遇到任何困难,你可以在下面这个网站找到在不同操作系统下安装的详细指引。

http://www.datarobot.com/blog/getting-up-and-running-with-python/

2、学习基本知识

你应该从了解Python语言、库和数据结构的基础知识开始,这个来自Codecademy的教程是你开始学习的最佳选择之一。

http://www.codecademy.com/tracks/python

在学完这个教程后,你应该可以轻松地用Python写些小程序,并且对类和对象的含义也有了理解。

特别学习:Lists(列表),Tuples(元组),Dictionaries(字典),列表的内涵和字典的内涵。

完成作业:完成在HackerRank上的教程习题。这些作业应该能让你的大脑因Python而“燃烧”。

备用资源:如果交互式编程学习不适合你,你也可以看看这个Google上的Python课程。这个两天的课程,内容覆盖了随后会提到的一些内容。

https://developers.google.com/edu/python/。

3、学习正则表达式

你将会大量使用它来进行数据清洗,特别是在处理文本数据。学习正则表达式的最好方法是完成这个课程

https://developers.google.com/edu/python/regular-expressions

并把这个“夹带”(当然不是考试的小抄,是速查表)放在随手可得的地方。

小编注:请上网站查看完整内容。

www.debuggex.com/cheatsheet/regex/python

完成“婴儿取名”练习

https://developers.google.com/edu/python/exercises/baby-names

如果想(gou)要(dan)更多的练习,请学习这个文本清理的课程。该课程将会在数据清理的不同步骤给你挑战。

http://www.analyticsvidhya.com/blog/2014/11/text-data-cleaning-steps-python/。

4、学习Python科学库

有趣之事,始于此处!这里,简要介绍不同的Python科学库——NumPy, SciPy, Matplotlib和Pandas。那么,让我们开始练习常用操作吧!

完整地练习NumPy操作课程,特别是NumPy的数组操作。这会建立一个好的基础,为将要面临的现实挑战做准备。

http://wiki.scipy.org/Tentative_NumPy_Tutorial

接下来,看看SciPy的课程。完整学习简介和基础知识部分,剩余部分可根据个人需要进行学习。

http://docs.scipy.org/doc/scipy/reference/tutorial/

如果你猜下一个是Matplotlib教程,那就错了!就我们目前的情况而言,它们太过全面了。事实上,把ipython笔记看到第68行(到animations)就基本可以了。

http://nbviewer.ipython.org/github/jrjohansson/scientific-python-lectures/blob/master/Lecture-4-Matplotlib.ipynb

最后,我们来看Pandas。它为Python提供了数据帧(DataFrame)的功能,类似于R语言。你也需要在这上面多花时间好好练习。对于所有中等规模的数据分析来说,Panda将会成为最有效的工具。从这个短小的10分钟入门开始,了解一下Pandas。然后,... ...

http://pandas.pydata.org/pandas-docs/stable/10min.html

然后,再看更详细的课程

http://www.gregreda.com/2013/10/26/intro-to-pandas-data-structures/。

你还可以看看“用Pandas进行探索性数据分析”(http://www.analyticsvidhya.com/blog/2014/09/data-munging-python-using-pandas-baby-steps-python/)以及“用Pandas进行数据整合”(http://www.analyticsvidhya.com/blog/2014/08/baby-steps-python-performing-exploratory-analysis-python/)两篇文章。

其它资源:

如果你需要一本有关Pandas和NumPy的教材,推荐Wes McKinney著的《Python for Data Analysis》

下面这个网站,还有很多的教程可作为Pandas的学习材料。

http://pandas.pydata.org/pandas-docs/stable/tutorials.html

完成来自哈佛大学CS109课程的作业。

http://nbviewer.ipython.org/github/cs109/2014/blob/master/homework/HW1.ipynb

小编注:回复 可视化 查看【数据科学之5个最佳Python库】,了解关于这些科学库的更多介绍和学习资源。

5、有效的数据可视化

学完这个来自CS109的课程,你可以跳过前面的两分钟,接来下的内容非常精彩!

http://cm.dce.harvard.edu/2015/01/14328/L03/screen_H264LargeTalkingHead-16x9.shtml

跟着课程完成下面课程作业

http://nbviewer.ipython.org/github/cs109/2014/blob/master/homework/HW2.ipynb

6、学习Scikit-learn和机器学习

现在,我们来到了整个过程的实质部分。Scikit-learn是在Python中对机器学习最有用的库。

学完来自哈佛大学2014年的CS109课程中第10讲到第18讲。你会全面了解机器学习,监督式学习算法(如回归、决策树、整体建模等)和非监督式学习算法(如聚类等)。切记,跟随每一讲,完成作业。

http://cs109.github.io/2014/pages/schedule.html

其它资源:

如果有一本必读的书,那就是《Programming Collective Intelligence》,非常经典,仍然是关于这方面最好的书之一

另外,如果你需要技术上更清晰的解释,可以选择Andrew Ng(这位大牛的课,不该不知道吧?)课程 ,用Python完成其中的习题。

https://www.coursera.org/course/ml

Scikit-lean的教程(这个不能忘)

试着完成Kaggle上的这个挑战

http://www.kaggle.com/c/data-science-london-scikit-learn

7、练习,练习,再练习

祝贺你,你做到了!现在,你已经拥有所需要的全部技能,只差练习了。哪里会有比在Kaggle上练习更好呢?上Kaggle与跟你一样的数据科学家一较高下。去吧,参加一个在Kaggle上正在举办的实时比赛吧!试试你所学到的全部知识!

http://www.kaggle.com/

8、深度学习

终于看到这个,兴奋吧?!现在,你已经学到了绝大多数关于机器学习的技术,是时候试试深度学习了。很有可能你已然知道什么是深度学习,万一仍然需要一个简要介绍,可以看看这个。

http://www.analyticsvidhya.com/blog/2014/06/deep-learning-attention/

对于深度学习,我也是个新手,就请把这些建议当作参考吧。最全面的资源在deeplearning.net上,在那里,你会找到所有的东西——讲座、数据集、挑战和教程。

http://deeplearning.net

如果想要了解神经网络的基本知识,试着学习Geoff Hinton(这个大牛,你应该也是知道的吧)的课程

https://www.coursera.org/course/neuralnets

原文发布于微信公众号 - PPV课数据科学社区(ppvke123)

原文发表时间:2015-04-22

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏ATYUN订阅号

俄罗斯研究人员利用神经网络使金属3D打印更加高效

3D打印机需要使用数学模型对定位和控制算法进行微调,以达到最佳性能。这是一个漫长而艰巨的过程,可能需要数周才能设置打印参数。即便如此,仍然存在打印错误的可能性。

9520
来自专栏大数据文摘

吴甘沙清华讲:大数据的10个技术前沿(中)

18630
来自专栏鸿的学习笔记

Upvote Dynamics on the Quora Network(上)

当一个答案被添加到Quora时,存在着将它分发给跟随作者的人的各种机制。其中最突出的是主页Feed和摘要电子邮件,但也有其他途径,如较新的“您关注的人”电子邮件...

7310
来自专栏机器之心

死磕论文前,不如先找齐一套好用的工具

作为像深度学习这样高产领域的研究人员,我们经常会发现自己被论文的汪洋所淹没。这些论文是如此之多,想全部读完并跟踪最新研究似乎很难很难。我觉得形成这种局面的一个重...

10530
来自专栏用户2442861的专栏

MATLAB 比较好入门书籍有哪些推荐

https://www.zhihu.com/topic/19559252/hot

51710
来自专栏CDA数据分析师

让机器猜猜你喜欢的歌手-R关联分析

作者 CDA 数据分析师 关联规则挖掘是数据挖掘中成果颇丰而且比较活跃的研究分支。采用关联模型比较典型的案例是“尿布与啤酒”的故事。在美国,一些年轻的父亲...

270100
来自专栏织云平台团队的专栏

T4 级老专家:AIOps 在腾讯的探索和实践

我今天要讲的主题,AIOps,是一个比较新的话题,其实从概念的提出到我们做,只有差不多一年的时间。一个新事物,有其发展的周期,在腾讯里面我们做了比较多的探索,但...

14.1K00
来自专栏大数据文摘

2016年2季度爆文精选 TOP10

22880
来自专栏大数据文摘

广告系统架构:要啥自行车!

1.1K70
来自专栏AI研习社

从深度学习到机器人控制,2017 人工智能新开发工具盘点

2017 年,在深度学习技术的加持下,CV、NLP、数据分析等领域全面开花,同时大量新开发工具和开源软件的涌现,降低了人工智能开发的门槛,加速了深度学习的普及。...

38760

扫码关注云+社区

领取腾讯云代金券