前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >强大的PyTorch:10分钟让你了解深度学习领域新流行的框架

强大的PyTorch:10分钟让你了解深度学习领域新流行的框架

作者头像
小莹莹
发布2018-04-24 15:38:48
8450
发布2018-04-24 15:38:48
举报
文章被收录于专栏:PPV课数据科学社区

摘要: 今年一月份开源的PyTorch,因为它强大的功能,它现在已经成为深度学习领域新流行框架,它的强大源于它内部有很多内置的库。本文就着重介绍了其中几种有特色的库,它们能够帮你在深度学习领域更上一层楼。

PyTorch由于使用了强大的GPU加速的Tensor计算(类似numpy)和基于tape的autograd系统的深度神经网络。这使得今年一月份被开源的PyTorch成为了深度学习领域新流行框架,许多新的论文在发表过程中都加入了大多数人不理解的PyTorch代码。这篇文章我们就来讲述一下我对PyTorch代码的理解,希望能帮助你阅读PyTorch代码。整个过程是基于贾斯汀·约翰逊的伟大教程。如果你想了解更多或者有超过10分钟的时间,建议你去读下整篇代码。

PyTorch由4个主要包装组成:

  1. Torch:类似于Numpy的通用数组库,可以在将张量类型转换为(torch.cuda.TensorFloat)并在GPU上进行计算。
  2. torch.autograd:用于构建计算图形并自动获取渐变的包
  3. torch.nn:具有共同层和成本函数的神经网络库
  4. torch.optim:具有通用优化算法(如SGD,Adam等)的优化包

1.导入工具

你可以这样导入PyTorch:

代码语言:javascript
复制
import torch # arrays on GPUimport torch.autograd as autograd #build a computational graphimport torch.nn as nn # neural net libraryimport torch.nn.functional as F # most non-linearities are hereimport torch.optim as optim # optimization package

2.torch数组取代了numpy ndarray - >在GPU支持下提供线性代数

第一个特色,PyTorch提供了一个像Numpy数组一样的多维数组,当数据类型被转换为(torch.cuda.TensorFloat)时,可以在GPU上进行处理。这个数组和它的关联函数是一般的科学计算工具。

从下面的代码中,我们可以发现,PyTorch提供的这个包的功能可以将我们常用的二维数组变成GPU可以处理的三维数组。这极大的提高了GPU的利用效率,提升了计算速度。

大家可以自己比较 Torch和numpy ,从而发现他们的优缺点。

代码语言:javascript
复制
# 2 matrices of size 2x3 into a 3d tensor 2x2x3d=[[[1., 2.,3.],[4.,5.,6.]],[[7.,8.,9.],[11.,12.,13.]]]d=torch.Tensor(d) # array from python listprint "shape of the tensor:",d.size()# the first index is the depthz=d[0]+d[1]print "adding up the two matrices of the 3d tensor:",zshape of the tensor: torch.Size([2, 2, 3])adding up the two matrices of the 3d tensor:   8  10  12 15  17  19[torch.FloatTensor of size 2x3]# a heavily used operation is reshaping of tensors using .view()print d.view(2,-1) #-1 makes torch infer the second dim  1   2   3   4   5   6  7   8   9  11  12  13[torch.FloatTensor of size 2x6]

3.torch.autograd可以生成一个计算图 - >自动计算梯度

第二个特色是autograd包,其提供了定义计算图的能力,以便我们可以自动计算渐变梯度。在计算图中,一个节点是一个数组,边(edge)是on数组的一个操作。要做一个计算图,我们需要在(torch.aurograd.Variable())函数中通过包装数组来创建一个节点。那么我们在这个节点上所做的所有操作都将被定义为边,它们将是计算图中新的节点。图中的每个节点都有一个(node.data)属性,它是一个多维数组和一个(node.grad)属性,这是相对于一些标量值的渐变(node.grad也是一个.Variable()) 。在定义计算图之后,我们可以使用单个命令(loss.backward())来计算图中所有节点的损耗梯度。

  • 使用torch.autograd.Variable()将张量转换为计算图中的节点。
    • 使用x.data访问其值。
    • 使用x.grad访问其渐变。
  • 在.Variable()上执行操作,绘制图形的边缘。
代码语言:javascript
复制
# d is a tensor not a node, to create a node based on it:x= autograd.Variable(d, requires_grad=True)print "the node's data is the tensor:", x.data.size()print "the node's gradient is empty at creation:", x.grad # the grad is empty right nowthe node's data is the tensor: torch.Size([2, 2, 3])the node's gradient is empty at creation: None# do operation on the node to make a computational graphy= x+1z=x+ys=z.sum()print s.creator<torch.autograd._functions.reduce.Sum object at 0x7f1e59988790># calculate gradientss.backward()print "the variable now has gradients:",x.gradthe variable now has gradients: Variable containing:(0 ,.,.) =   2  2  2  2  2  2(1 ,.,.) =   2  2  2  2  2  2[torch.FloatTensor of size 2x2x3]

4.torch.nn包含各种NN层(张量行的线性映射)+(非线性)-->

其作用是有助于构建神经网络计算图,而无需手动操纵张量和参数,减少不必要的麻烦。

第三个特色是高级神经网络库(torch.nn),其抽象出了神经网络层中的所有参数处理,以便于在通过几个命令(例如torch.nn.conv)就很容易地定义NN。这个包也带有流行的损失函数的功能(例如torch.nn.MSEloss)。我们首先定义一个模型容器,例如使用(torch.nn.Sequential)的层序列的模型,然后在序列中列出我们期望的层。这个高级神经网络库也可以处理其他的事情,我们可以使用(model.parameters())访问参数(Variable())

代码语言:javascript
复制
# linear transformation of a 2x5 matrix into a 2x3 matrixlinear_map=nn.Linear(5,3)print "using randomly initialized params:", linear_map.parametersusing randomly initialized params: <bound method Linear.parameters of Linear (5 -> 3)># data has 2 examples with 5 features and 3 targetdata=torch.randn(2,5) # trainingy=autograd.Variable(torch.randn(2,3)) # target# make a nodex=autograd.Variable(data, requires_grad=True)# apply transformation to a node creates a computational grapha=linear_map(x)z=F.relu(a)o=F.softmax(z)print "output of softmax as a probability distribution:", o.data.view(1,-1)# loss functionloss_func=nn.MSELoss() #instantiate loss functionL=loss_func(z,y) # calculateMSE loss between output and targetprint "Loss:", Loutput of softmax as a probability distribution:  0.2092  0.1979  0.5929  0.4343  0.3038  0.2619[torch.FloatTensor of size 1x6]Loss: Variable containing: 2.9838[torch.FloatTensor of size 1]

我们还可以通过子类(torch.nn.Module)定义自定义层,并实现接受(Variable())作为输入的(forward())函数,并产生(Variable())作为输出。我们也可以通过定义一个时间变化的层来做一个动态网络。

  • 定义自定义层时,需要实现2个功能:
    • _ init_函数必须始终被继承,然后层的所有参数必须在这里定义为类变量(self.x)
    • 正向函数是我们通过层传递输入的函数,使用参数对输入进行操作并返回输出。输入需要是一个autograd.Variable(),以便pytorch可以构建图层的计算图。
代码语言:javascript
复制
class Log_reg_classifier(nn.Module):    def __init__(self, in_size,out_size):        super(Log_reg_classifier,self).__init__() #always call parent's init         self.linear=nn.Linear(in_size, out_size) #layer parameters    def forward(self,vect):        return F.log_softmax(self.linear(vect)) # 

5.torch.optim也可以做优化—>

我们使用torch.nn构建一个nn计算图,使用torch.autograd来计算梯度,然后将它们提供给torch.optim来更新网络参数。

第四个特色是与NN库一起工作的优化软件包(torch.optim)。该库包含复杂的优化器,如Adam,RMSprop等。我们定义一个优化器并传递网络参数和学习率(opt = torch.optim.Adam(model.parameters(),lr = learning_rate)),然后我们调用(opt.step())对我们的参数进行近一步更新。

代码语言:javascript
复制
optimizer=optim.SGD(linear_map.parameters(),lr=1e-2) # instantiate optimizer with model params + learning rate# epoch loop: we run following until convergenceoptimizer.zero_grad() # make gradients zeroL.backward(retain_variables=True)optimizer.step()print LVariable containing: 2.9838[torch.FloatTensor of size 1]

建立神经网络很容易,但是如何协同工作并不容易。这是一个示例显示如何协同工作:

代码语言:javascript
复制
# define modelmodel = Log_reg_classifier(10,2)# define loss functionloss_func=nn.MSELoss() # define optimizeroptimizer=optim.SGD(model.parameters(),lr=1e-1)# send data through model in minibatches for 10 epochsfor epoch in range(10):    for minibatch, target in data:        model.zero_grad() # pytorch accumulates gradients, making them zero for each minibatch        #forward pass        out=model(autograd.Variable(minibatch))        #backward pass         L=loss_func(out,target) #calculate loss        L.backward() # calculate gradients        optimizer.step() # make an update step

希望上述的介绍能够帮你更好的阅读PyTorch代码。

本文由北邮@爱可可-爱生活老师推荐,阿里云云栖社区组织翻译。

文章原标题《Understand PyTorch code in 10 minutes》,

作者: Hamidreza Saghir,机器学习研究员 - 多伦多大学博士生 译者:袁虎 审阅:阿福

文章为简译,更详细内容,请查看https://hsaghir.github.io/data_science/pytorch_starter/?spm=5176.100239.blogcont114620.17.8aFHP9

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2017-07-03,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 PPV课数据科学社区 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
GPU 云服务器
GPU 云服务器(Cloud GPU Service,GPU)是提供 GPU 算力的弹性计算服务,具有超强的并行计算能力,作为 IaaS 层的尖兵利器,服务于生成式AI,自动驾驶,深度学习训练、科学计算、图形图像处理、视频编解码等场景。腾讯云随时提供触手可得的算力,有效缓解您的计算压力,提升业务效率与竞争力。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档