专栏首页算法修养ZOJ 3204 Connect them

ZOJ 3204 Connect them

Connect them


Time Limit: 1 Second      Memory Limit: 32768 KB


You have n computers numbered from 1 to n and you want to connect them to make a small local area network (LAN). All connections are two-way (that is connecting computers i and j is the same as connecting computers j and i). The cost of connecting computer i and computer j is cij. You cannot connect some pairs of computers due to some particular reasons. You want to connect them so that every computer connects to any other one directly or indirectly and you also want to pay as little as possible.

Given n and each cij , find the cheapest way to connect computers.

Input

There are multiple test cases. The first line of input contains an integer T (T <= 100), indicating the number of test cases. Then T test cases follow.

The first line of each test case contains an integer n (1 < n <= 100). Then n lines follow, each of which contains n integers separated by a space. The j-th integer of the i-th line in these n lines is cij, indicating the cost of connecting computers i and j (cij = 0 means that you cannot connect them). 0 <= cij <= 60000, cij = cjicii = 0, 1 <= ij <= n.

Output

For each test case, if you can connect the computers together, output the method in in the following fomat:

i1 j1 i1 j1 ......

where ik ik (k >= 1) are the identification numbers of the two computers to be connected. All the integers must be separated by a space and there must be no extra space at the end of the line. If there are multiple solutions, output the lexicographically smallest one (see hints for the definition of "lexicography small") If you cannot connect them, just output "-1" in the line.

Sample Input

2
3
0 2 3
2 0 5
3 5 0
2
0 0
0 0

Sample Output

1 2 1 3
-1

Hints: A solution A is a line of p integers: a1a2, ...ap. Another solution B different from A is a line of q integers: b1b2, ...bq. A is lexicographically smaller than B if and only if: (1) there exists a positive integer r (r <= pr <= q) such that ai = bi for all 0 < i < r and ar < br OR

(2) p < q and ai = bi for all 0 < i <= p

最小生成树:

#include <iostream>
#include <string.h>
#include <stdlib.h>
#include <algorithm>
#include <math.h>
#include <stdio.h>

using namespace std;
const int INF=1e5;
struct Node
{
    int x;int y;
    int value;
}a[10005];
int cmp(Node a,Node b)
{
    if(a.value==b.value)
    {
        if(a.x==b.x)
        {
            return a.y<b.y;
        }
        return a.x<b.x;
    }
    else
        return a.value<b.value;
}
struct node
{
    int x;
    int y;
}ans[INF+5];
int cmp2(node a,node b)
{
    if(a.x==b.x)
        return a.y<b.y;
    else
        return a.x<b.x;
}
int n;
int father[INF+5];
int find(int x)
{
    if(father[x]!=x)
        father[x]=find(father[x]);
    return father[x];
}

int main()
{
    int t;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d",&n);
        int tot=0;
        for(int i=1;i<=n;i++)
        {
            for(int j=1;j<=n;j++)
            {
                scanf("%d",&a[++tot].value);
                a[tot].x=i;
                a[tot].y=j;
                if(a[tot].value==0)
                    a[tot].value=INF;
            }
        }
        sort(a+1,a+tot+1,cmp);
        for(int i=1;i<=n;i++)
            father[i]=i;
        int cot=0;
        for(int i=1;i<=tot;i++)
        {
            if(a[i].value==INF)
                continue;
            int xx=find(a[i].x);
            int yy=find(a[i].y);
            if(xx!=yy)
            {
                father[xx]=yy;
                ans[++cot].x=a[i].x;
                ans[cot].y=a[i].y;
            }
        }
        int root=find(1);
        bool res=true;
        for(int i=2;i<=n;i++)
        {
            find(i);
            if(father[i]!=root)
                res=false;
        }
        if(!res)
            printf("-1\n");
        else
        {
            sort(ans+1,ans+1+cot,cmp2);
            for(int i=1;i<=cot;i++)
            {
                if(i==cot)
                    printf("%d %d\n",ans[i].x,ans[i].y);
                else
                    printf("%d %d ",ans[i].x,ans[i].y);
            }
        }
        
        
    }
    return 0;
}

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • POJ-1276-Cash Machine(多重背包)

    Cash Machine Time Limit: 1000MS Memory Limit: 10000K Total Submissions:...

    ShenduCC
  • ZOJ 3705 Applications

    Recently, the ACM/ICPC team of Marjar University decided to choose some new memb...

    ShenduCC
  • CodeForces 157A Game Outcome

    A. Game Outcome time limit per test 2 seconds memory limit per test 256 me...

    ShenduCC
  • 搜索专题2 | 3D地宫寻路 POJ - 2251

    上一篇我们做了一道棋子摆放的题目,采用的是DFS算法,本篇是一篇BFS算法,在刚开始学习搜索算法的时候,会觉得DFS和BFS算法非常相似,因为都是搜索然后得到结...

    ACM算法日常
  • POJ-2585-Window Pains

    Window PainsTime Limit: 1000MS Memory Limit: 65536KTotal Submissions: 2915 ...

    某些人
  • Gym 100952I&&2015 HIAST Collegiate Programming Contest I. Mancala【模拟】

    I. Mancala time limit per test:3 seconds memory limit per test:256 megabytes inp...

    Angel_Kitty
  • Codeforces Round #410 (Div. 2)(A,字符串,水坑,B,暴力枚举,C,思维题,D,区间贪心)

    A. Mike and palindrome time limit per test:2 seconds memory limit per test:256 m...

    Angel_Kitty
  • hdu---(1800)Flying to the Mars(trie树)

    Flying to the Mars Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768...

    Gxjun
  • POJ 1012 Joseph

    Joseph Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 53862 ...

    Angel_Kitty
  • BZOJ 3053: The Closest M Points(K-D Tree)

    attack

扫码关注云+社区

领取腾讯云代金券