业界 | Apache MXNet 发布 v0.11.0版,支持苹果Core ML和Keras v1.2

选自AWS

机器之心编译

参与:黄小天、路雪

近日,孵化于 Apache 软件基金会 Apache MXNet 发布了 v0.11.0 最终测试版本,它不仅具有一个 Core ML 模型转换器,同时还支持 Keras v1.2。此外,该版本还包括额外的功能更新、性能提升以及一些修复。你可以从源代码构建 MXNet 从而获取新版本。

Apache MXNet 正在 Apache 软件基金会(ASF)中进行孵化。上周,MXNet 社区为 MXNet v0.11.0 引入了一个最终测试版本,作为一个孵化项目这还是第一次,社区现在正投票决定是否要发行这一版本,它主要有以下功能提升:

  • 一个 Core ML 模型转换器,允许你通过 MXNet 训练深度学习模型,并轻松部署到苹果设备上。
  • 支持 Keras v1.2,允许你在构建深度学习模型时使用以 MXNet 为运行后端的 Keras 接口。

这个 v0.11.0 最终测试版还包括额外的功能更新、性能提升以及一些修复。

使用 Core ML(开发者预览版)在苹果设备上运行 MXNet 模型

该发布包含一个可用于将 MXNet 深度学习模型转换为苹果 Core ML 格式的工具。Core ML 是一个框架,应用开发者可以使用它在苹果设备上以最小的内存占用和电耗部署机器学习模型。该框架使用 Swift 编程语言,可在 Xcode 集成开发环境(IDE)上获取。它允许开发者像所有其他的 Swift 对象类一样与机器学习模型互动。

现在有了这款转换工具,你就具备了可构建深度学习应用的快速管道。使用 MXNet 将可扩展、高效的分布模型训练从云端移到苹果设备的快速运行时界面。Core ML 模型转换器的开发者预览版支持计算机视觉模型。更多详细信息,请查看 https://github.com/apache/incubator-mxnet/tree/master/tools。

支持 Keras v1.2 多 GPU 执行

该版本同样为 Keras v1.2 提供了各种支持,Keras v1.2 是一个非常流行的高级 Python 库,它可以轻松地开发深度学习模型。Keras 还提供了高级构建块(对神经网络建模)的易用接口。

开发者可以使用其它框架(如 TensorFlow、Theano 等)配置 Keras,而现在 MXNet 可以作为运行后端(runtime backend)执行底层的复杂计算和模型训练。

使用 MXNet 作为 Keras 的后端,开发者能在多 GPU 上实现高性能扩展。以前使用 Keras 并不能很好地将训练模型扩展到多块 GPU 中。Keras 用户现在可以通过多块 GPU 在训练中实现线性缩放。以下代码展示了当我们把 MXNet 作为后端时,如何在 Keras 中配置 GPU 的数量:

# Prepare the list of GPUs to be used in training
NUM_GPU = 16 # or the number of GPUs available on your machine
gpu_list = []for i in range(NUM_GPU): gpu_list.append('gpu(%d)' % i)

# Compile your model by setting the context to the list of GPUs to be used in training.
model.compile(loss='categorical_crossentropy',
 optimizer=opt,
 metrics=['accuracy'], 
 context=gpu_list)

现在,利用 Keras 界面,并在多个 GPU 上运行成为可能。英伟达已经就以 MXNet 为后端的 Keras 的性能基准进行了广泛的研究。你还可以访问 GitHub repo(https://github.com/dmlc/keras/wiki/Installation)了解如何使用 MXNet 作为 Keras 的后端。

新版本获取途径

你可以从源代码构建 MXNet 从而获取最终测试版,或者使用以下命令执行 pip 安装:

pip install mxnet==0.11.0.rc1

原文链接:https://aws.amazon.com/cn/blogs/ai/apache-mxnet-release-candidate-now-supports-apple-core-ml-and-keras-v1-2/

本文为机器之心报道,转载请联系本公众号获得授权。

✄------------------------------------------------

原文发布于微信公众号 - 机器之心(almosthuman2014)

原文发表时间:2017-08-17

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏人工智能头条

黄金三镖客之TensorFlow版

2133
来自专栏吉浦迅科技

【讲座】在NVIDIA Jetson上从Tensorflow到TensorRT

NVIDIA在太平洋时间3月8日上午11:00-12:00(北京时间3月9日凌晨3:00-4:00)举办了主题为“AI at the Edge: TensorF...

6126
来自专栏ATYUN订阅号

TensorFlow工程师分享了TensorFlow Serving最近的创新进展

近日,Tesorflow软件工程师Noah Fiedel通过本文描述了机器学习模型TensorFlow Serving最近的一些创新进展 ? TensorFlo...

4523
来自专栏AI科技大本营的专栏

手机也能直接玩机器学习了?来,让大神手把手教你

对于各种热门的机器学习、深度学习课程,你一定了解过不少了。 但上课之后,如何把学出来的这些新方法用在你的工作项目?如何让你的移动应用也能具备机器学习、深度学习...

4389
来自专栏AI研习社

深度学习预测比特币价格;基于神经网络的自动化前端开发 | Github 项目推荐

对于开发者来讲,证明其编程能力最好的方式是展示他们的项目和代码。AI 研习社本周从 YouTube、知乎以及 Github 官网上搜罗了数个与 AI 相关的开源...

4297
来自专栏IT大咖说

自主研发、不断总结经验,美团搜索推荐机器学习平台

内容来源:2018 年 5 月 26 日,美团点评技术专家杨一帆在“饿了么技术沙龙·第25弹【搜索推荐】”进行《Why WAI: 美团点评搜索推荐机器学习平台》...

3265
来自专栏AI科技评论

深度 | 基于移动设备的机器学习,本地与云端孰优孰劣?

AI科技评论按:如果您觉得,是时候给自己的手机应用添加一些热门的机器学习或深度学习算法.....这是个好想法!但您会怎么选择?致力于提供算法服务及小白科普的咨询...

3346
来自专栏数说工作室

logistic回归建模指南

昨天的logistic回归:从生产到使用【上:使用篇】(在微信公众号“数说工作室”中回复“logit1”查看),有不少数说网友们建议把最后的建模指南图单独发一下...

3498
来自专栏挖掘大数据

如何利用已有的大数据技术,搭建机器学习平台

人脑具备不断积累经验的能力,依赖经验我们便具备了分析处理的能力,比如我们要去菜场挑一个西瓜,别人或者自己的经验告诉我们色泽青绿、根蒂蜷缩、纹路清晰、敲声浑响的西...

6420
来自专栏腾讯技术工程官方号的专栏

如何节省 1TB 图片带宽?解密极致图像压缩

在不断出现的新格式被逐步应用之后,兼容性最好的传统老格式 JPEG 依然地位高居不下占据大幅带宽,如何在老格式上也继续挖掘优化点?

78910

扫码关注云+社区

领取腾讯云代金券