前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >教程 | 如何使用JavaScript构建机器学习模型

教程 | 如何使用JavaScript构建机器学习模型

作者头像
机器之心
发布2018-05-08 14:27:42
1.2K0
发布2018-05-08 14:27:42
举报
文章被收录于专栏:机器之心

选自:hackernoon

作者:Abhishek Soni

参与:李泽南

目前,机器学习领域建模的主要语言是 Python 和 R,前不久腾讯推出的机器学习框架 Angel 则支持 Java 和 Scala。本文作者 Abhishek Soni 则用行动告诉我们,开发机器学习模型,JavaScript 也可以。

JavaScript?我不是应该使用 Python 吗?甚至 Scikit-learn 在 JavaScript 上都不工作。

这是可能的,实际上,连我自己都惊讶于开发者对此忽视的态度。就 Scikit-learn 而言,Javascript 的开发者事实上已经推出了适用的库,它会在本文中有所提及。那么,让我们看看 Javascript 在机器学习上能够做什么吧。

根据人工智能先驱 Arthur Samuel 的说法,机器学习为计算机提供了无需明确编程的学习能力。换句话说,它使得计算机能够自我学习并执行正确的指令,无需人类提供全部指导。

谷歌已经把自己移动优先的策略转换到人工智能优先很久了。

为什么 JavaScript 在机器学习界未被提及过?

  • 慢(真的假的?)
  • 矩阵操作很困难(这里有库,比如 math.js)
  • 仅用于 Web 开发(然而这里还有 Node.js)
  • 机器学习库通常是在 Python 上的(还好,JS 的开发者人数也不少)

在 JavaScript 中有一些可供使用的预制库,其中包含一些机器学习算法,如线性回归、SVM、朴素贝叶斯等等,以下是其中的一部分。

  • brain.js(神经网络)
  • Synaptic(神经网络)
  • Natural(自然语言处理)
  • ConvNetJS(卷积神经网络)
  • mljs(一组具有多种功能的子库)

首先,我们将使用 mljs 回归库来进行一些线性回归操作。

参考代码:https://github.com/abhisheksoni27/machine-learning-with-js

1. 安装库

$ npm install ml-regression csvtojson

ml-regression 正如其名,负责机器学习的线性回归。

csvtojson 是一个用于 node.js 的快速 CSV 解析器,它允许加载 CSV 数据文件并将其转换为 JSON。

2. 初始化并加载数据

下载数据文件(.csv),并将其加入你的项目。

链接:http://www-bcf.usc.edu/~gareth/ISL/Advertising.csv

如果你已经初始化了一个空的 npm 项目,打开 index.js,输入以下代码。

const ml = require('ml-regression'); const csv = require('csvtojson'); const SLR = ml.SLR; // Simple Linear Regression const csvFilePath = 'advertising.csv'; // Data let csvData = [], // parsed Data X = [], // Input y = []; // Output

我把文件放在了项目的根目录下,如果你想放在其他地方,请记得更新 csvFilePath。

现在我们使用 csvtojson 的 fromFile 方法加载数据文件:

csv() .fromFile(csvFilePath) .on('json', (jsonObj) => { csvData.push(jsonObj); }) .on('done', () => { dressData(); // To get data points from JSON Objects performRegression(); });

3. 打包数据,准备执行

JSON 对象被存储在 csvData 中,我们还需要输入数据点数组和输出数据点。我们通过一个填充 X 和 Y 变量的 dressData 函数来运行数据。

function dressData() { /** * One row of the data object looks like: * { * TV: "10", * Radio: "100", * Newspaper: "20", * "Sales": "1000" * } * * Hence, while adding the data points, * we need to parse the String value as a Float. */ csvData.forEach((row) => { X.push(f(row.Radio)); y.push(f(row.Sales)); }); } function f(s) { return parseFloat(s); }

4. 训练模型开始预测

数据已经打包完毕,是时候训练我们的模型了。

为此,我们需要写一个 performRegression 函数:

function performRegression() { regressionModel = new SLR(X, y); // Train the model on training data console.log(regressionModel.toString(3)); predictOutput(); }

performRegression 函数有一个方法 toString,它为浮点输出获取一个名为 precision 的参数。predictOutput 函数能让你输入数值,然后将模型的输出传到控制台。它是这样的(注意,我使用的是 Node.js 的 readline 工具):

function predictOutput() { rl.question('Enter input X for prediction (Press CTRL+C to exit) : ', (answer) => { console.log(`At X = ${answer}, y = ${regressionModel.predict(parseFloat(answer))}`); predictOutput(); }); }

以下是为了增加阅读用户的代码

const readline = require('readline'); // For user prompt to allow predictions const rl = readline.createInterface({ input: process.stdin, output: process.stdout });

5. 大功告成!

遵循以上步骤,你的 index.js 应该是这样:

const ml = require('ml-regression'); const csv = require('csvtojson'); const SLR = ml.SLR; // Simple Linear Regression const csvFilePath = 'advertising.csv'; // Data let csvData = [], // parsed Data X = [], // Input y = []; // Output let regressionModel; const readline = require('readline'); // For user prompt to allow predictions const rl = readline.createInterface({ input: process.stdin, output: process.stdout }); csv() .fromFile(csvFilePath) .on('json', (jsonObj) => { csvData.push(jsonObj); }) .on('done', () => { dressData(); // To get data points from JSON Objects performRegression(); }); function performRegression() { regressionModel = new SLR(X, y); // Train the model on training data console.log(regressionModel.toString(3)); predictOutput(); } function dressData() { /** * One row of the data object looks like: * { * TV: "10", * Radio: "100", * Newspaper: "20", * "Sales": "1000" * } * * Hence, while adding the data points, * we need to parse the String value as a Float. */ csvData.forEach((row) => { X.push(f(row.Radio)); y.push(f(row.Sales)); }); } function f(s) { return parseFloat(s); } function predictOutput() { rl.question('Enter input X for prediction (Press CTRL+C to exit) : ', (answer) => { console.log(`At X = ${answer}, y = ${regressionModel.predict(parseFloat(answer))}`); predictOutput(); }); }

到你的终端上运行 node index.js,得到的输出会是这样:

$ node index.js f(x) = 0.202 * x + 9.31 Enter input X for prediction (Press CTRL+C to exit) : 151.5 At X = 151.5, y = 39.98974927911285 Enter input X for prediction (Press CTRL+C to exit) :

恭喜!你刚刚在 JavaScript 中训练了第一个线性回归模型。(PS. 你注意到速度了吗?)

本文为机器之心编译,转载请联系本公众号获得授权。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2017-06-21,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 机器之心 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
NLP 服务
NLP 服务(Natural Language Process,NLP)深度整合了腾讯内部的 NLP 技术,提供多项智能文本处理和文本生成能力,包括词法分析、相似词召回、词相似度、句子相似度、文本润色、句子纠错、文本补全、句子生成等。满足各行业的文本智能需求。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档