前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >业界 | OpenAI提出Reptile:可扩展的元学习算法

业界 | OpenAI提出Reptile:可扩展的元学习算法

作者头像
机器之心
发布2018-05-10 10:28:17
1K0
发布2018-05-10 10:28:17
举报
文章被收录于专栏:机器之心机器之心

选自OpenAI Blog

作者:ALEX NICHOL & JOHN SCHULMAN

机器之心编译

近日,OpenAI 发布了简单元学习算法 Reptile,该算法对一项任务进行重复采样、执行随机梯度下降、更新初始参数直到习得最终参数。该方法的性能可与 MAML(一种广泛应用的元学习算法)媲美,且比后者更易实现,计算效率更高。

元学习是学习如何学习的过程。元学习算法会学习任务的一个分布,每项任务都是学习问题,并输出快速学习器,学习器可从少量样本中学习并进行泛化。一个得到充分研究的元学习问题是 few-shot 分类,其中每项任务都是分类问题,学习器只能看到 1-5 个输入-输出样本(每个类别),之后学习器必须对新输入进行分类。下面,你可以尝试 OpenAI 的 1-shot 分类交互 Demo,其使用了 Reptile。

点击「Edit All」按钮,绘制三种不同的形状或符号,然后在后侧的输入区域绘制其中一个形状,就可以看到 Reptile 的分类效果。前三个图是标注样本:每个定义一类。最后的图表示未知样本,Reptile 输出其属于每个类别的概率。(请点击原文链接体验交互)

Reptile 的工作原理

和 MAML 类似,Reptile 会学习神经网络的参数初始化方法,以使神经网络可使用少量新任务数据进行调整。但是 MAML 通过梯度下降算法的计算图来展开微分计算过程,而 Reptile 在每个任务中执行标准形式的随机梯度下降(SGD):它不用展开计算图或计算任意二阶导数。因此 Reptile 比 MAML 所需的计算量和内存都更少。伪代码如下:

最后一步也可以把 Φ−W 作为梯度,将其插入如 Adam 等更复杂的优化器。

很令人震惊,该方法运行效果很好。如果 k=1,该算法对应「联合训练」(joint training):在多项任务上执行 SGD。尽管联合训练在很多情况下可以学到有用的初始化,但在 zero-shot 学习不可能出现的情况下(如输出标签是随机排列的)它能学习的很少。Reptile 要求 k>1,更新依赖于损失函数的高阶导数。正如 OpenAI 在论文中展示的那样,k>1 时 Reptile 的行为与 k=1(联合训练)时截然不同。

为了分析 Reptile 的工作原理,OpenAI 使用泰勒级数逼近更新。Reptile 更新最大化同一任务中不同小批量的梯度内积,以改善泛化效果。该发现可能在元学习之外也有影响,如解释 SGD 的泛化性能。OpenAI 的分析结果表明 Reptile 和 MAML 可执行类似的更新,包括具备不同权重的相同两个项。

在 OpenAI 的实验中,他们展示了 Reptile 和 MAML 在 Omniglot 和 Mini-ImageNet 基准上执行 few-shot 分类任务时具备类似的性能。Reptile 收敛速度更快,因为其更新具备更低的方差。OpenAI 关于 Reptile 的分析表明,我们可以使用不同的 SGD 梯度组合获取大量不同的算法。在下图中,假设我们在不同任务中使用不同批量大小的 SGD 执行 K 个更新步,产生 g_1,g_2,…,g_k k 个梯度。下图展示了在 Omniglot 上的学习曲线,且它由梯度的和作为元梯度而绘制出。g_2 对应一阶 MAML,即原版 MAML 论文提出的算法。由于方差缩减,使用更多的梯度会导致更快的学习或收敛。注意仅使用 g_1(对应 k=1)如预测那样在这个任务中没有什么提升,因为我们无法改进 zero-shot 的性能。

实现

实现的 GitHub 地址:https://github.com/openai/supervised-reptile

该实现应用 TensorFlow 进行相关的计算,代码可在 Omniglot 和 Mini-ImageNet 上复现。此外,OpenAI 也发布了一个更小的基于 JavaScript 的实现(https://github.com/openai/supervised-reptile/tree/master/web),其对使用 TensorFlow 预训练的模型进行了调整——以上 demo 就是基于此实现的。

最后,下面是一个 few-shot 回归的简单示例,预测 10(x,y) 对的随机正弦波。该示例基于 PyTorch:

代码语言:javascript
复制
import numpy as np
import torch
from torch import nn, autograd as ag
import matplotlib.pyplot as plt
from copy import deepcopy

seed = 0
plot = True
innerstepsize = 0.02 # stepsize in inner SGD
innerepochs = 1 # number of epochs of each inner SGD
outerstepsize0 = 0.1 # stepsize of outer optimization, i.e., meta-optimization
niterations = 30000 # number of outer updates; each iteration we sample one task and update on it

rng = np.random.RandomState(seed)
torch.manual_seed(seed)

# Define task distribution
x_all = np.linspace(-5, 5, 50)[:,None] # All of the x points
ntrain = 10 # Size of training minibatches
def gen_task():
    "Generate classification problem"
    phase = rng.uniform(low=0, high=2*np.pi)
    ampl = rng.uniform(0.1, 5)
    f_randomsine = lambda x : np.sin(x + phase) * ampl
    return f_randomsine

# Define model. Reptile paper uses ReLU, but Tanh gives slightly better results
model = nn.Sequential(
    nn.Linear(1, 64),
    nn.Tanh(),
    nn.Linear(64, 64),
    nn.Tanh(),
    nn.Linear(64, 1),
)

def totorch(x):
    return ag.Variable(torch.Tensor(x))

def train_on_batch(x, y):
    x = totorch(x)
    y = totorch(y)
    model.zero_grad()
    ypred = model(x)
    loss = (ypred - y).pow(2).mean()
    loss.backward()
    for param in model.parameters():
        param.data -= innerstepsize * param.grad.data

def predict(x):
    x = totorch(x)
    return model(x).data.numpy()

# Choose a fixed task and minibatch for visualization
f_plot = gen_task()
xtrain_plot = x_all[rng.choice(len(x_all), size=ntrain)]

# Reptile training loop
for iteration in range(niterations):
    weights_before = deepcopy(model.state_dict())
    # Generate task
    f = gen_task()
    y_all = f(x_all)
    # Do SGD on this task
    inds = rng.permutation(len(x_all))
    for _ in range(innerepochs):
        for start in range(0, len(x_all), ntrain):
            mbinds = inds[start:start+ntrain]
            train_on_batch(x_all[mbinds], y_all[mbinds])
    # Interpolate between current weights and trained weights from this task
    # I.e. (weights_before - weights_after) is the meta-gradient
    weights_after = model.state_dict()
    outerstepsize = outerstepsize0 * (1 - iteration / niterations) # linear schedule
    model.load_state_dict({name : 
        weights_before[name] + (weights_after[name] - weights_before[name]) * outerstepsize 
        for name in weights_before})

    # Periodically plot the results on a particular task and minibatch
    if plot and iteration==0 or (iteration+1) % 1000 == 0:
        plt.cla()
        f = f_plot
        weights_before = deepcopy(model.state_dict()) # save snapshot before evaluation
        plt.plot(x_all, predict(x_all), label="pred after 0", color=(0,0,1))
        for inneriter in range(32):
            train_on_batch(xtrain_plot, f(xtrain_plot))
            if (inneriter+1) % 8 == 0:
                frac = (inneriter+1) / 32
                plt.plot(x_all, predict(x_all), label="pred after %i"%(inneriter+1), color=(frac, 0, 1-frac))
        plt.plot(x_all, f(x_all), label="true", color=(0,1,0))
        lossval = np.square(predict(x_all) - f(x_all)).mean()
        plt.plot(xtrain_plot, f(xtrain_plot), "x", label="train", color="k")
        plt.ylim(-4,4)
        plt.legend(loc="lower right")
        plt.pause(0.01)
        model.load_state_dict(weights_before) # restore from snapshot
        print(f"-----------------------------")
        print(f"iteration               {iteration+1}")
        print(f"loss on plotted curve   {lossval:.3f}") # would be better to average loss ove

论文:Reptile: a Scalable Metalearning Algorithm

地址:https://d4mucfpksywv.cloudfront.net/research-covers/reptile/reptile_update.pdf

摘要:本论文讨论了元学习问题,即存在任务的一个分布,我们希望找到能在该分布所采样的任务(模型未见过的任务)中快速学习的智能体。我们提出了一种简单元学习算法 Reptile,它会学习一种能在新任务中快速精调的参数初始化方法。Reptile 会重复采样一个任务,并在该任务上执行训练,且将初始化朝该任务的已训练权重方向移动。Reptile 不像同样学习初始化的 MAML,它并不要求在优化过程中是可微的,因此它更适合于需要很多更新步的优化问题。我们的研究发现,Reptile 在一些有具备完整基准的 few-shot 分类任务上表现良好。此外,我们还提供了一些理论性分析,以帮助理解 Reptile 的工作原理。

原文链接:https://blog.openai.com/reptile/

本文为机器之心编译,转载请联系本公众号获得授权。

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2018-03-08,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 机器之心 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档