前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >入门 | 十分钟搞定Keras序列到序列学习(附代码实现)

入门 | 十分钟搞定Keras序列到序列学习(附代码实现)

作者头像
机器之心
发布2018-05-10 10:28:39
1.4K0
发布2018-05-10 10:28:39
举报
文章被收录于专栏:机器之心

选自Keras Blog

作者:Francois Chollet

机器之心编译

参与:黄小天、路雪

如何在 Keras 中实现 RNN 序列到序列学习?本文中,作者将尝试对这一问题做出简短解答;本文预设你已有一些循环网络和 Keras 的使用经验。

GitHub:https://github.com/fchollet/keras/blob/master/examples/lstm_seq2seq.py

什么是序列到序列学习?

序列到序列学习(Seq2Seq)是指训练模型从而把一个域的序列(比如英语语句)转化为另一个域的序列(比如法语中的对应语句)。

代码语言:javascript
复制
"the cat sat on the mat" -> [Seq2Seq model] -> "le chat etait assis sur le tapis"

Seq2Seq 可用于机器翻译或者省去问题回答——通常来讲,它可以随时生成文本。完成这一任务有很多方式,比如 RNN 或一维卷积。本文只介绍 RNN。

次要案例:当输入序列和输出序列长度相同

当输入序列和输出序列长度相同时,你可以通过 Keras LSTM 或者 GRU 层(或者其中的堆栈)简单地实现模型。这一实例脚本中的案例展示了如何教会 RNN 学习添加被编码为字符串的数字:

一般案例:标准的 Seq2Seq

一般情况下,输入序列和输出序列有不同的长度(比如机器翻译)。这就需要一个更高级的设置,尤其在没有进一步语境的「序列到序列模型」时。下面是其工作原理:

  • 一个 RNN 层(或其中的堆栈)作为「编码器」:它处理输入序列并反馈其内部状态。注意我们抛弃了编码器 RNN 的输出,只恢复其状态。该状态在下一步中充当解码器的「语境」。
  • 另一个 RNN 层作为「解码器」:在给定目标序列先前字母的情况下,它被训练以预测目标序列的下一个字符。具体讲,它被训练把目标序列转化为相同序列,但接下来被一个时间步抵消,这一训练过程在语境中被称为「teacher forcing」。更重要的是,编码器把其状态向量用作初始状态,如此编码器获得了其将要生成的信息。实际上,在给定 targets[...t] 的情况下,解码器学习生成 targets[t+1...],前提是在输入序列上。

在推理模式中,即当要解码未知的输入序列,我们完成了一个稍微不同的处理:

  1. 把输入序列编码进状态向量
  2. 从大小为 1 的目标序列开始
  3. 馈送状态向量和 1 个字符的目标序列到解码器从而为下一字符生成预测
  4. 通过这些预测采样下一个字符(我们使用 argmax)
  5. 把采样的字符附加到目标序列
  6. 不断重复直至我们生成序列最后的字符或者达到字符的极限

相同的处理也可被用于训练没有「teacher forcing」的 Seq2Seq 网络,即把解码器的预测再注入到解码器之中。

Keras 实例

让我们用实际的代码演示一下这些想法。

对于实例实现,我们将使用一对英语语句及其法语翻译的数据集,你可以从 http://www.manythings.org/anki/下载它,文件的名称是 fra-eng.zip。我们将会实现一个字符级别的序列到序列模型,逐个字符地处理这些输入并生成输出。另一个选择是单词级别的模型,它对机器学习更常用。在本文最后,你会发现通过嵌入层把我们的模型转化为单词级别模型的一些注释。

这是实例的全部脚本:https://github.com/fchollet/keras/blob/master/examples/lstm_seq2seq.py。

下面是这一过程的总结:

1. 把语句转化为 3 个 Numpy 数组 encoder_input_data、decoder_input_data、decoder_target_data:

  • encoder_input_data 是一个形态的 3D 数组(num_pairs, max_english_sentence_length, num_english_characters),包含一个英语语句的独热向量化。
  • decoder_input_data 是一个形态的 3D 数组(num_pairs, max_french_sentence_length, num_french_characters),包含一个法语语句的独热向量化。
  • decoder_target_data 与 decoder_input_data 相同,但是被一个时间步抵消。decoder_target_data[:, t, :] 与 decoder_input_data[:, t + 1, :] 相同。

2. 在给定 encoder_input_data 和 decoder_input_data 的情况下,训练一个基本的基于 LSTM 的 Seq2Seq 模型以预测 decoder_target_data。我们的模型使用 teacher forcing。

3. 解码一些语句以检查模型正在工作。

由于训练过程和推理过程(解码语句)相当不同,我们使用了不同的模型,虽然两者具有相同的内在层。这是我们的模型,它利用了 Keras RNN 的 3 个关键功能:

  • return_state 构造函数参数配置一个 RNN 层以反馈列表,其中第一个是其输出,下一个是内部的 RNN 状态。这被用于恢复编码器的状态。
  • inital_state 调用参数指定一个 RNN 的初始状态,这被用于把编码器状态作为初始状态传递至解码器。
  • return_sequences 构造函数参数配置一个 RNN 反馈输出的全部序列。这被用在解码器中。
代码语言:javascript
复制
from keras.models import Model
from keras.layers import Input, LSTM, Dense

# Define an input sequence and process it.
encoder_inputs = Input(shape=(None, num_encoder_tokens))
encoder = LSTM(latent_dim, return_state=True)
encoder_outputs, state_h, state_c = encoder(encoder_inputs)
# We discard `encoder_outputs` and only keep the states.
encoder_states = [state_h, state_c]

# Set up the decoder, using `encoder_states` as initial state.
decoder_inputs = Input(shape=(None, num_decoder_tokens))
# We set up our decoder to return full output sequences,
# and to return internal states as well. We don't use the 
# return states in the training model, but we will use them in inference.
decoder_lstm = LSTM(latent_dim, return_sequences=True, return_state=True)
decoder_outputs, _, _ = decoder_lstm(decoder_inputs,
                                     initial_state=encoder_states)
decoder_dense = Dense(num_decoder_tokens, activation='softmax')
decoder_outputs = decoder_dense(decoder_outputs)

# Define the model that will turn
# `encoder_input_data` & `decoder_input_data` into `decoder_target_data`
model = Model([encoder_inputs, decoder_inputs], decoder_outputs)

我们用这两行代码训练模型,同时在 20% 样本的留存集中监测损失。

代码语言:javascript
复制
# Run training
model.compile(optimizer='rmsprop', loss='categorical_crossentropy')
model.fit([encoder_input_data, decoder_input_data], decoder_target_data,
          batch_size=batch_size,
          epochs=epochs,
          validation_split=0.2)

大约 1 小时后在 MacBook CPU 上,我们已准备好做推断。为了解码测试语句,我们将重复:

  • 编码输入语句,检索初始解码器状态。
  • 用初始状态运行一步解码器,以「序列开始」为目标。输出即是下一个目标字符。
  • 附加预测到的目标字符并重复。

这是我们的推断设置:

代码语言:javascript
复制
encoder_model = Model(encoder_inputs, encoder_states)

decoder_state_input_h = Input(shape=(latent_dim,))
decoder_state_input_c = Input(shape=(latent_dim,))
decoder_states_inputs = [decoder_state_input_h, decoder_state_input_c]
decoder_outputs, state_h, state_c = decoder_lstm(
    decoder_inputs, initial_state=decoder_states_inputs)
decoder_states = [state_h, state_c]
decoder_outputs = decoder_dense(decoder_outputs)
decoder_model = Model(
    [decoder_inputs] + decoder_states_inputs,
    [decoder_outputs] + decoder_states)

我们使用它实现上述推断循环(inference loop):

代码语言:javascript
复制
def decode_sequence(input_seq):
    # Encode the input as state vectors.
    states_value = encoder_model.predict(input_seq)

    # Generate empty target sequence of length 1.
    target_seq = np.zeros((1, 1, num_decoder_tokens))
    # Populate the first character of target sequence with the start character.
    target_seq[0, 0, target_token_index['\t']] = 1.

    # Sampling loop for a batch of sequences
    # (to simplify, here we assume a batch of size 1).
    stop_condition = False
    decoded_sentence = ''
    while not stop_condition:
        output_tokens, h, c = decoder_model.predict(
            [target_seq] + states_value)

        # Sample a token
        sampled_token_index = np.argmax(output_tokens[0, -1, :])
        sampled_char = reverse_target_char_index[sampled_token_index]
        decoded_sentence += sampled_char

        # Exit condition: either hit max length
        # or find stop character.
        if (sampled_char == '\n' or
           len(decoded_sentence) > max_decoder_seq_length):
            stop_condition = True

        # Update the target sequence (of length 1).
        target_seq = np.zeros((1, 1, num_decoder_tokens))
        target_seq[0, 0, sampled_token_index] = 1.

        # Update states
        states_value = [h, c]

    return decoded_sentence

我们得到了一些不错的结果——这在意料之中,因为我们解码的样本来自训练测试。

代码语言:javascript
复制
Input sentence: Be nice.
Decoded sentence: Soyez gentil !
-
Input sentence: Drop it!
Decoded sentence: Laissez tomber !
-
Input sentence: Get out!
Decoded sentence: Sortez !

这就是我们的十分钟入门 Keras 序列到序列模型教程。完整代码详见 GitHub:https://github.com/fchollet/keras/blob/master/examples/lstm_seq2seq.py。

常见问题

1. 我想使用 GRU 层代替 LSTM,应该怎么做?

这实际上变简单了,因为 GRU 只有一个状态,而 LSTM 有两个状态。这是使用 GRU 层适应训练模型的方法:

代码语言:javascript
复制
encoder_inputs = Input(shape=(None, num_encoder_tokens))
encoder = GRU(latent_dim, return_state=True)
encoder_outputs, state_h = encoder(encoder_inputs)

decoder_inputs = Input(shape=(None, num_decoder_tokens))
decoder_gru = GRU(latent_dim, return_sequences=True)
decoder_outputs = decoder_gru(decoder_inputs, initial_state=state_h)
decoder_dense = Dense(num_decoder_tokens, activation='softmax')
decoder_outputs = decoder_dense(decoder_outputs)
model = Model([encoder_inputs, decoder_inputs], decoder_outputs)

2. 我想使用整数序列的单词级别模型,应该怎么做?

如果你的输入是整数序列(如按词典索引编码的单词序列),你可以通过 Embedding 层嵌入这些整数标记。方法如下:

代码语言:javascript
复制
# Define an input sequence and process it.
encoder_inputs = Input(shape=(None,))
x = Embedding(num_encoder_tokens, latent_dim)(encoder_inputs)
x, state_h, state_c = LSTM(latent_dim,
                           return_state=True)(x)
encoder_states = [state_h, state_c]

# Set up the decoder, using `encoder_states` as initial state.
decoder_inputs = Input(shape=(None,))
x = Embedding(num_decoder_tokens, latent_dim)(decoder_inputs)
x = LSTM(latent_dim, return_sequences=True)(x, initial_state=encoder_states)
decoder_outputs = Dense(num_decoder_tokens, activation='softmax')(x)

# Define the model that will turn
# `encoder_input_data` & `decoder_input_data` into `decoder_target_data`
model = Model([encoder_inputs, decoder_inputs], decoder_outputs)

# Compile & run training
model.compile(optimizer='rmsprop', loss='categorical_crossentropy')
# Note that `decoder_target_data` needs to be one-hot encoded,
# rather than sequences of integers like `decoder_input_data`!
model.fit([encoder_input_data, decoder_input_data], decoder_target_data,
          batch_size=batch_size,
          epochs=epochs,
          validation_split=0.2)

3. 如果我不想使用「teacher forcing」,应该怎么做?

一些案例中可能不能使用 teacher forcing,因为你无法获取完整的目标序列,比如,在线训练非常长的语句,则缓冲完成输入-目标语言对是不可能的。在这种情况下,你要通过将解码器的预测重新注入解码器输入进行训练,就像我们进行推断时所做的那样。

你可以通过构建硬编码输出再注入循环(output reinjection loop)的模型达到该目标:

代码语言:javascript
复制
from keras.layers import Lambda
from keras import backend as K

# The first part is unchanged
encoder_inputs = Input(shape=(None, num_encoder_tokens))
encoder = LSTM(latent_dim, return_state=True)
encoder_outputs, state_h, state_c = encoder(encoder_inputs)
states = [state_h, state_c]

# Set up the decoder, which will only process one timestep at a time.
decoder_inputs = Input(shape=(1, num_decoder_tokens))
decoder_lstm = LSTM(latent_dim, return_sequences=True, return_state=True)
decoder_dense = Dense(num_decoder_tokens, activation='softmax')

all_outputs = []
inputs = decoder_inputs
for _ in range(max_decoder_seq_length):
    # Run the decoder on one timestep
    outputs, state_h, state_c = decoder_lstm(inputs,
                                             initial_state=states)
    outputs = decoder_dense(outputs)
    # Store the current prediction (we will concatenate all predictions later)
    all_outputs.append(outputs)
    # Reinject the outputs as inputs for the next loop iteration
    # as well as update the states
    inputs = outputs
    states = [state_h, state_c]

# Concatenate all predictions
decoder_outputs = Lambda(lambda x: K.concatenate(x, axis=1))(all_outputs)

# Define and compile model as previously
model = Model([encoder_inputs, decoder_inputs], decoder_outputs)
model.compile(optimizer='rmsprop', loss='categorical_crossentropy')

# Prepare decoder input data that just contains the start character
# Note that we could have made it a constant hard-coded in the model
decoder_input_data = np.zeros((num_samples, 1, num_decoder_tokens))
decoder_input_data[:, 0, target_token_index['\t']] = 1.

# Train model as previously
model.fit([encoder_input_data, decoder_input_data], decoder_target_data,
          batch_size=batch_size,
          epochs=epochs,
          validation_split=0.2)

原文链接:https://blog.keras.io/a-ten-minute-introduction-to-sequence-to-sequence-learning-in-keras.html

本文为机器之心编译,转载请联系本公众号获得授权。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2017-10-03,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 机器之心 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
机器翻译
机器翻译(Tencent Machine Translation,TMT)结合了神经机器翻译和统计机器翻译的优点,从大规模双语语料库自动学习翻译知识,实现从源语言文本到目标语言文本的自动翻译,目前可支持十余种语言的互译。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档