【译】大数据如何改变金融?

选文:Selene Wang 翻译:Wendy Zhou, 田桂英 校对:Selene Wang

◆ ◆ ◆

序言

当今社会,庞大的数据及高端复杂的科学技术正在持续改变着产业的经营方式和竞争方式。每一天,世界上都有两百五十万的三次方的字节数据产生出来,这直接导致了仅在过去两年时间内就创建出世界上90%的数据。这种通常所谓的“大数据”的快速增长和存储,也创造出了很多机会:比如收集数据,处理数据,结构化和非结构化的数据分析等等。

在遵循大数据的3 V法则的基础上(后文会有详细介绍),各类组织通过对已知数据加以分析,帮助自己的公司作出更好的商业决策。这些已经采用大数据技术的行业包括:金融服务,科技,市场营销和健康护理/保健等。大数据的采用不断改变着行业的竞争格局。有89 %的企业相坚信如果没有决策分析将会让自己在市场竞争上存在很大风险。

特别是金融服务,现如今已是广泛采用大数据分析来获得更好的、有稳定回报的投资决策。交易算法使用复杂的数学模型和大量的历史数据,最大限度地提高投资回报。持续采用大数据技术将不可避免地改变金融服务的格局。然而,虽然大数据的应用给我们带来了明显的好处,但与此同时如何让大数据处理更多、更大量的数据也成为了挑战。 (有关详细信息,请参见:The Big Play In Big Data)。

◆ ◆ ◆

大数据的3V法则

3 V法则是大数据的基础,他们是:量级(volume),种类(variety)和速度(velocity)。面对日益激烈的竞争,监管约束和客户需求,金融机构正在寻求新的方法/技术来提高效率。根据不同的行业,企业和公司可以利用大数据的某些特定方面获得竞争优势。

速度是指数据被存储和分析的速度。纽约证交所每天需要捕捉1兆兆字节的信息。到2016年,将有大约18.9十亿的网络连接,这意味着地球上每个人都贡献了约2.5次连接。金融机构可以通过“专注高效,快速处理交易”而在行业竞争中脱颖而出。

大数据可以被分类为非结构化数据或结构化数据。非结构化数据是指未被组织好并且无法被应用于已定义好的模型的数据。这包括来自社交媒体的消息,这类信息一般有助于机构收集客户需求。结构化数据是指已在关系数据库和电子表格中组织管理好的信息。总的来说,为了更好的作出商业决策,各种形式的数据都必须可以被持续有效的管理。

市场数据量的不断增加对金融机构构成了一大挑战。庞大的历史数据,使得银行及资本市场需要积极持续的管理数据。同样,投资银行和资产管理公司需要使用大量的数据做出正确的投资决策。保险和退休基金也需要通过获取大量数据来进行风险管理和索赔信息。 (有关详细信息,请参见:Quants:The Rocket Scientists Of Wall Street)

◆ ◆ ◆

算法交易(Algorithmic Trading)

随着计算机性能的日益强大,算法交易已成为大数据的代名词。自动化处理能使电脑程序以交易人员无法达到的速度和频率完成金融交易。通过数学模型,算法交易使金融交易能以最优的价格及时的执行交易订单,同时,也减少了由于行为因素导致的人为错误。

金融机构可以更有效地精简算法以结合大量数据,利用大量的历史数据回测策略,从而生成风险较低的投资。这有助于用户找出要保留的有用数据,抛弃低值数据。鉴于算法可以用结构化和非结构化数据,结合实时新闻,社交媒体和股票数据于一体的算法引擎可以创建更好的交易决策。不像人们做决策时会受到不同信息源,情感和偏见的影响,算法的交易将只根据金融模型和数据输出执行结果。

机器人顾问在一个数字化平台上使用投资算法和海量数据。机器人顾问以现代投资组合理论为理论框架进行投资,它们通常赞同进行长期投资,以维持收益的一致性,它们也需要与人类的财务顾问进行小小的互动。(更多信息,请参阅:Basics of Algorithmic Trading: Concepts and Examples.)

◆ ◆ ◆

挑战

尽管金融服务行业正在不懈地拥抱大数据,但是在该领域中仍然存在着重大挑战。最重要的挑战就是各种非结构化数据的收集所招致的隐私问题。个人信息可以通过社交媒体、电子邮件和健康记录搜集到个人的决策信息。

具体到金融服务而言,大多数的争辩关注在数据分析上。为了获得准确的结果,对全量数据的分析需要更复杂的统计技术。特别是,评论家以伪相关性的模式高估了信噪比,这表示可靠的统计学结果纯属偶然。同样,由于历史数据的趋势,以经济理论为基础的算法通常也会指向长期投资机会。支持短期投资策略的有效生成结果是预测模型中固有的挑战。

◆ ◆ ◆

总结

大数据将继续改变各行各业的格局,尤其是金融服务业。许多金融机构都在采用大数据分析,以保持竞争优势。通过结构化和非结构化数据,复杂的算法可以使用多个数据源执行交易。人类的情感和偏见可以通过自动化实现最小化;然而,应用大数据分析的交易也有其特定的挑战,到目前为止,因为该领域相对较为新颖,产生的统计结果还没有完全被接受。然而,随着金融服务对大数据和自动化应用的趋势,复杂的统计分析技术的准确性将会进一步提升。

原文发布于微信公众号 - 大数据文摘(BigDataDigest)

原文发表时间:2016-04-28

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏新智元

【Python进入山东小学教材】吴恩达:孩子会识字后立马教她Python!

作者:文强 【新智元导读】已经没有什么能够阻挡Python了。根据最近火爆朋友圈的一则消息,Python已经进入山东省小学教材。Python这几年的火热,离不开...

58180
来自专栏新智元

【董飞】谷歌研究主管论人工智能以及程序员自我修养

【新智元导读】谷歌研究主管Peter Norvig在文中介绍了他对人工智能、个人计算和地图服务诸多领域的看法。文中提供了Peter写了大量AI笔记的个人网站和公...

31250
来自专栏web前端教室

选择很多,怎么才叫“对”

这段时间,我拉黑了一些群成员,因为他们问的问题很low。问我是不是前端做的久了,不容易做到管理?我直接回复是的。跟我说什么,要不就去学后端,后端更容易转管理什么...

20550
来自专栏程序员宝库

最终一轮面试被 Google 刷掉,这是一种什么样的体验?

我应聘的是位于美国密歇根安娜堡分公司的 Associate Account Strategist,实质上是谷歌前线业务的销售岗,归谷歌 AdWords 部门管辖...

15530
来自专栏二进制文集

程序员生存定律

在CSDN上偶然间看到这本李智勇前辈《程序员生存定律》,用了4天时间认真读完了。书中详细介绍了关于程序员的各种事情,并引经据典表达自己的看法。

19040
来自专栏我是攻城师

2014年终总结——-我的匆匆这一年(面试,毕业季,工作)

39860
来自专栏数据猿

投稿|DataEye& S+:2016年8月国内手游新品洞察报告

<数据猿导读> 游戏行业是一个非常多元化的行业,也是一个竞争非常激烈的行业,几乎每个月都有上千款的新游上线,过去的8月份游戏市场又发生了什么变化呢?看看Data...

34860
来自专栏新智元

以亚马逊Alexa为代表的语音助手不能成为入口载体的3大原因

【新智元导读】 所谓“入口”,就是网络大数据汇聚的必经之地。入口历来是各大小公司的必争之地。亚马逊 Echo-Alexa 软硬合体,能够以人工智能的旗号,从智能...

32250
来自专栏PPV课数据科学社区

大数据告诉你:程序员如何涨薪水

? 美国队长:这怎么知道? 国防军官:这怎么不知道,21世纪就是本数码书。佐拉教会九头蛇怎么去读它,你的银行记录、病例、投票模式、电子邮件、通话信息、还有大学...

29930
来自专栏数据的力量

“做过许多工作,却依然没啥能力” ——为啥?肿么办?

每天忙忙碌碌,从周一忙到周五,甚至周末两天还要加班。每天有做不完的工作,日复一日,年复一年,眼睛一睁一闭,在这个岗位上已经干了N年……突然有天意识到,我似乎工作...

14440

扫码关注云+社区

领取腾讯云代金券