大咖丨张钹院士:人工智能赶超人类的三大法宝

按要求转载自公众号联合时报(ID:lhsbwx)

中国科学院院士张钹对国内外人工智能产业发展现状,提出我国仅靠跟随性的应用深度学习发展人工智能,是无法引领这项技术实现革命性突破的。语音也在里面学,文字也在里面学,图像也在里面学,会不会互相干扰呢?其实不仅不会互相干扰,在一定程度上还略微有帮助。北美已在引领这些发展,如果中国只低头用深度学习去解决应用问题,不去研究一个目的背后需要解决的问题,要做到“引领”则是不可能的。

为什么机器下围棋能超过人类;为什么在图像识别的某些方面会超过人类,成功的因素是什么?我认为有三大法宝:数据、计算资源和算法。这就是深度学习成功的三大法宝。大家对于前两个方面比较注意、有体会,很多人还没有体会到算法的重要性。

在这里主要是谈人工智能和大数据的关系,以及中国在人工智能领域如何赶上和超过世界的先进水平。

深度学习有三大法宝

首先认识一下基于大数据的深度学习。深度学习的提出,在人工智能领域中是一个重大突破。以往,人工智能只能用来解决人们对它非常了解,而且能够清楚地将它表达出来的问题。但深度学习拓展了人工智能所能解决问题的边界。

其次,深度学习具有一定的通用性。比如,人们用深度学习做图像识别,不一定要具备非常丰富、专业的图像知识。即使你不是这个领域的专家,也能把深度学习应用到这个领域。所以,深度学习是一种大众化的工具,它把解决问题的领域大大延展了。对大众而言,这些奇迹引发人们认识到了深度学习的威力。就是在图像识别领域,在某一个图像库里,机器识别准确度略微超过人类,或者机器的误识率低于人类,微软做的工作、百度在语音识别上的工作,识别错误率略低于人类,在两个领域的识别上机器都超过了人类。

现在要分析两个问题:

第一,大家都希望把深度学习的方法用到其他领域可能会产生新的奇迹,这些奇迹会不会发生,在什么样的情况下会发生;

第二,如何推动深度学习继续向前发展。

这些奇迹来自何处?为什么机器下围棋能超过人类,为什么在图像识别的某些方面会超过人类,成功的因素是什么?我认为有三大法宝:数据、计算资源和算法。这就是深度学习成功的三大法宝。大家对于前两个方面比较注意、有体会,很多人还没有体会到算法的重要性。我用阿尔法棋作为例子,具体谈谈它怎么来使用这三个法宝。

阿尔法棋用了两个多星期的时间,学了七千万局棋局。机器还自己跟自己下,跟李世石下之前也下了千万局的棋局。也就是说比所有的棋手多下了几千万局的棋,最后的结果是4比1战胜李世石。最好的棋手一生中所下的棋局是百万级,而阿尔法棋下过的棋局是几十亿级的,这两项数据非常不对称,人类绝对会输。这里可以看到数据的力量和计算资源的力量,大家没有看到背后算法的力量。但阿尔法棋能够在两三周里学到几千万个棋局,靠的是什么,其实是靠学习算法,它自己跟自己下棋,靠的是什么,靠的是强化学习算法,没有这些,它是做不到的。

人工智能目前做不到举一反三

是不是所有问题,只要有数据,就能够做到这么好呢?不是!这要受四个条件限制:

首先是需要有大量的数据,第二是完全信息,第三是确定性,第四是单领域和单任务。只有这四个限定条件达成后才有可能做到刚才说的,达到或者超过人类的水平。有很多问题(同时)符合这些条件,比如说医疗数据,可以做大数据处理,像某些疾病的医疗诊断、医疗图像的识别、医学图像识别等等,只要(问题领域)符合这四个条件,都可以做,而且经过努力,依靠那三大法宝是可以达到或者超过人类的水平。但是,大量的工作并不符合以上四个条件,不符合中间一条两条或者四条都不符合,如果一旦不符合这四个条件中的任何一个,现在的人工智能技术就有困难。

对此,大家以往一直感到困惑,语音也在里面学,文字也在里面学,图像也在里面学,会不会互相干扰呢,过去我们怕装不同东西的时候它会乱了,会互相干扰,其实不仅不会互相干扰,在一定程度上还略微有帮助。北美已在引领这些发展,如果中国只低头用深度学习去解决应用问题,不去研究一个目的背后需要解决的问题,要达到引领是不可能的。

深度学习也不是完美的。很多人以为用深度学习去做产业或者应用不会有问题,但是这里要强调,深度学习有大量的隐患,这些隐患在很多应用场合下是绝对不允许的。首先,它需要大量的样本,有些问题很难获取很多样本,比如特殊疾病,罕见疾病,根本没有那么多样本。最重要的是,不可理解性,现在看到深度学习建立的系统,实际上跟人的思路很不一样。因此,说机器识别能力超过了人,这只是在非常特定的环境下说,其实很多方面它不如人。比如它识别率比人高,只是说它区别马和牛的能力比人高,就是在一定的数据库下它识别能力比人高,但是它根本上不认识马和牛。将来如果做一个人机决策系统,机器做出来的决策,人都不知道它怎么做出来的,那怎么用呢,谁敢用呢?

机器和人如何相互理解

现在实际要解决的问题就是人和机器能够合作的问题。大家都在强调,今后的方向肯定是人和机器合作,要各展所长,这里面有一个问题就是机器如何理解人,人如何理解机器。过去的重点是放在机器如何理解人上面,比如说人类的语音命令,用自然语言发的命令它能够听懂,这是所谓自然语言对话。这其实忽视了一个非常重要的另外一个点,就是人如何理解机器,这是由深度学习引起的,因为深度学习出来以后,它做出来的事情人非常不理解,这就给人机共同合作带来了巨大的困难,所以现在很多的重点除了做自然语言理解,理解用户的意图等等这些工作外,还要集中在人如何理解机器这方面。

为什么会发生这种情况,为什么机器的思路跟人不一样,因为机器处理的方式要用专业的语言。机器怎么识别猫呢?它只是从一些局部的特征,局部的纹理来识别它,它根本不是从猫的整体来识别,因为机器要取得整体的特性是非常困难的,它只取得局部的特性,所以它都是在利用局部特性,在一个特征空间里去认识猫,跟人认识猫的角度完全不一样,人认识猫是从所谓语义空间里,是通过它的各种各样的属性来识别它。

目前,这些研究不仅只是大学或者科研机构的事情了,企业也都在纷纷参与。我有个团队也是围绕上面的问题,重点是如何突破将来人工智能要解决的基础和关键问题,而不仅只是低头跟随性地应用深度学习,只有从这点上着手,我们才有可能实现在人工智能领域追赶、超过或引领的目标。

【今日机器学习概念】

Have a Great Definition

原文发布于微信公众号 - 大数据文摘(BigDataDigest)

原文发表时间:2018-01-27

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏人工智能快报

通往未来人工智能的三条途径:量子计算、神经形态计算和超级计算

美国“数据科学中心”(Data Science Central)网站的编辑总监William Vorhies撰文表示,量子计算、神经形态计算和超级计算可以带来更...

3569
来自专栏算法channel

机器学习是万能的吗?AI落地有哪些先决条件?

这段时间,有幸聆听了几场大牛报告,一位是第四范式,目前工业界应用AI经验最丰富的之一,曾经在百度与吴恩达共同推进AI在工业界的落地;另一位来自学术界,新加坡国立...

1424
来自专栏SIGAI学习与实践平台

【AI就业面面观】如何选择适合自己的舞台? --写给即将参加校招的学弟学妹们

一年一度的校园招聘即将开始,各位学弟学妹们将面临继高考、读研/博之后的又一次重大的人生选择。第一份工作对于一个人职业生涯的一生都至关重要,如何选择适合自己的团队...

1084
来自专栏人工智能头条

知人知面需知心——论人工智能技术在推荐系统中的应用

2235
来自专栏AI科技评论

Facebook、微软、谷歌三大研究巨头齐聚首,共同探讨人工智能发展现状和趋势

AI 科技评论消息,日前 AAAS 在 reddit 上组织了一场问答,Facebook 人工智能研究院 Yann LeCun,微软研究院院长 Eric Hor...

3385
来自专栏机器之心

人物 | Yann LeCun:让Facebook学会思考的人

选自BuzzFeed 作者:Alex Kantrowitz 机器之心编译 Yann LeCun 是深度学习研究领域内一个响当当的名字。作为 Faceboo...

2779
来自专栏AI科技评论

观点 | UC伯克利教授迈克尔·乔丹采访:人类对机器学习期待过高,机器学习的发展还应当更广阔

AI 科技评论按:2017年6月21日至22日,腾讯·云+未来峰会在深圳举行。在主题为“机器学习:创新视角,直面挑战”的演讲 - AI 科技评论后,AI 科技评...

3046
来自专栏PPV课数据科学社区

【学习】写给新人数据挖掘基础知识介绍

一、数据挖掘技术的基本概念 随着计算机技术的发展,各行各业都开始采用计算机及相应的信息技术进行管理和运营,这使得企业生成、收集、存贮和处理数据的能力大大提高,数...

3066
来自专栏AI研习社

Facebook、微软、谷歌三大研究巨头齐聚首,共同探讨人工智能发展现状和趋势

AI 研习社消息,日前 AAAS 在 reddit 上组织了一场问答,Facebook 人工智能研究院 Yann LeCun,微软研究院院长 Eric Horv...

3457
来自专栏专知

剑桥大学计算机系博士孙琳:自然语言处理(NLP)的发展以及在教育领域的应用情况(附报告pdf下载)

? ? 大家好!我是孙琳,很高兴参加TAB教育科技论坛,今天分享的题目是“教育应用中的自然语言处理”。首先我先做一下自我介绍,我是剑桥大学计算机系的博士,博士...

6055

扫码关注云+社区

领取腾讯云代金券